Preview

Экология и промышленность России

Расширенный поиск
Доступ открыт Открытый доступ  Доступ закрыт Доступ платный или только для Подписчиков

Оценка токсического действия органоминеральных систем на основе бентонита и ПАВ на биологические тест-объекты

https://doi.org/10.18412/1816-0395-2025-11-30-35

Аннотация

Синтезированы органоглины на основе Na-формы бентонита и ПАВ разных типов. Для оценки токсичности разработанных органоглин проведен биотест с использованием почвенных микроорганизмов, выделенных из серой лесной пахотной почвы. По оценке колониеобразующих единиц и величины биомассы установлено, что минимальный токсический эффект при прямом внесении 1 и 3 % сорбентов или их суспензии характерен для органоглины с алкилполиглюкозидом (неионогенным ПАВ) и органоглины с кокоамфодиацетатом динатрия (амфотерным ПАВ). Отмечено, что максимальный токсический эффект характерен для органоглины на основе кокоиминодипропионата натрия (амфотерный ПАВ) и лаураминоксида (неионогенный ПАВ). Биосенсорным методом бактериальной тест-системы “Эколюм” выявлено, что проявление токсичности свойственно для органоглины с кокоиминодипропионатом натрия (амфотерным ПАВ) и органоглины с лаураминоксидом (неионогенным ПАВ) (T >20 %).

Об авторах

М. М. Герцен
Тульский государственный педагогический университет им. Л.Н. Толстого
Россия

руководитель Студенческого конструкторского бюро



Л. В. Переломов
Тульский государственный педагогический университет им. Л.Н. Толстого
Россия

канд. биол. наук, зав. лабораторией



Список литературы

1. Cheng D., Ngo H.H., Guo W. et al. A critical review on antibiotics and hormones in swine wastewater: Water pollution problems and control approaches. Journal of hazardous materials. 2020. Vol. 387. P. 121682. https://doi.org/10.1016/j.jhazmat.2019.121682.

2. Anh H.Q., Le T.P.Q., Le N.D. et al. Antibiotics in surface water of East and Southeast Asian countries: A focused review on contamination status, pollution sources, potential risks, and future perspectives. Science of The Total Environment. 2021. Vol. 764. P. 142865. https://doi.org/10.1016/j.scitotenv.2020.142865/

3. Kumar V., Sharma A., Kumar R. et al. Assessment of heavy-metal pollution in three different Indian water bodies by combination of multivariate analysis and water pollution indices // Human and ecological risk assessment: an international journal. 2020. Vol. 26. No. 1. P. 1—16. https://doi.org/10.1080/10807039.2018.1497946.

4. Wei Y., Zhu Y., Yang L. et al. Effects of oil pollution on the growth and rhizosphere microbial community of Calamagrostis epigejos. Scientific Reports. 2025. Vol. 15. No. 1. P. 1278. https://doi.org/10.1038/s41598-025-85754-0.

5. Dehkordi M.M., Nodeh Z.P., Dehkordi K.S. et al. Soil, air, and water pollution from mining and industrial activities. Sources of pollution, environmental impacts, and prevention and control methods. Results in Engineering. 2024. Vol. 23. С. 102729. https://doi.org/10.1016/j.rineng.2024.102729.

6. Cardinale A.M., Carbone C., Fortunato M. et al. Minerals for wastewater purification: a case study. Clays and Clay Minerals. 2025. Vol. 73. С. E10. https://doi.org/10.1017/cmn.2024.45.

7. Zhang Z., Zhao J., Zhang H. et al. Synthesis of amine grafted Cu- BTC and its application in regenerable adsorption of ultra-low concentration methyl mercaptan. Separation and Purification Technology. 2023. Vol. 304. P. 122356. https://doi.org/10.1016/j.seppur.2022.122356.

8. Hussain A.H.M.S., Tatarchuk B.J. Adsorptive desulfurization of jet and diesel fuels using Ag/TiOx—Al2O3 and Ag/TiOx—SiO2 adsorbents. Fuel. 2013. Vol. 107. P. 465—473. https://doi.org/10.1016/j.fuel.2012.11.030.

9. Xie S., Huang L., Su C. et al. Application of clay minerals as adsorbents for removing heavy metals from the environment. Green and Smart Mining Engineering. 2024. Vol. 1. No. 3. P. 249—261. https://doi.org/10.1016/j.gsme.2024.07.002.

10. Khan S., Ajmal S., Hussain T. et al. Clay-based materials for enhanced water treatment: adsorption mechanisms, challenges, and future directions. Journal of Umm Al-Qura University for Applied Sciences. 2023. Vol. 11. P. 1—16. https://doi.org/10.1007/s43994-023-00083-0.

11. Shen Y.H. Preparations of organobentonite using nonionic surfactants. Chemosphere. 2001. Vol. 44. No. 5. С. 989—995. https://doi.org/10.1016/S0045-6535(00)00564-6.

12. Sarkar B., Xi Y., Megharaj M. et al. Bioreactive organoclay: a new technology for environmental remediation. Crit. Rev. Environ. Sci. Technol. 2012. Vol. 42. P. 435—488. https://doi.org/10.1080/10643389.2010.518524.

13. Sarkar B., Naidu R., Rahman M. et al. Organoclays reduce arsenic bioavailability and bioaccessibility in contaminated soils. J. Soils Sediments. 2012. Vol. 12. P. 704—712. https://doi.org/10.1007/s11368-012-0487-z.

14. Abbate C., Arena M., Baglieri A., Gennari M. Effects of organoclays on soil eubacterial community assessed by molecular approaches. J. Hazard. Mater. 2009. Vol. 168. No. 1. P. 466—472. https://doi.org/10.1016/j.jhazmat.2009.02.050.

15. Herrera P., Burghardt R.C., Phillips T.D. Adsorption of Salmonella enteritidis by cetylpyridinium-exchanged montmorillonite clays. Vet. Microbiol. 2000. Vol. 74. No. 3. P. 259—272. https://doi.org/10.1016/S0378-1135(00)00157-7.

16. Herrera P., Burghardt R., Huebner H.J., Phillips T.D. The efficacy of sandimmobilized organoclays as filtration bed materials for bacteria. Food Microbiol. 2004. Vol. 21. No. 1. P. 1—10. https://doi.org/10.1016/S0740-0020(03)00050-9.

17. Magaсa S.M., Quintana P., Aguilar D.H. et al. Antibacterial activity of montmorillonites modified with silver. Journal of Molecular Catalysis A: Chemical. 2008. Vol. 281. No. 1—2. P. 192—199. https://doi.org/10.1016/j.molcata.2007.10.024.

18. Jesenák K., Salamunová L., Kuchta T. Eradication of Listeria from water suspensions using octadecylammonium derivatives of montmorillonite. J. Food Nutr. Res. 2010. Vol. 49. No. 2. P. 85—88.

19. Hsu S.-H., Tseng H.-J., Hung H.-S. et al. Antimicrobial activities and cellular responses to natural silicate clays and derivatives modified by cationic alkylamine salts. ACS Appl. Mater. Interfaces. 2009. Vol. 1. No. 11. P. 2556—2564. https://doi.org/10.1021/am900479q.

20. DeLeo P.C., Huynh C., Pattanayek M. et al. Assessment of ecological hazards and environmental fate of disinfectant quaternary ammonium compounds. Ecotoxicology and Environmental Safety. 2020. Vol. 206. P. 111116. https://doi.org/10.1016/j.ecoenv.2020.111116.

21. Mulder I., Siemens J., Sentek V. et al. Quaternary ammonium compounds in soil: implications for antibiotic resistance development. Reviews in Environmental Science and Bio/Technology. 2018. Vol. 17. P. 159—185. https://doi.org/10.1007/s11157-017-9457-7.

22. Gertsen M., Perelomov L., Kharkova A. et al. Removal of Lead Cations by Novel Organoclays Derived from Bentonite and Amphoteric and Nonionic Surfactants. Toxics. 2024. Vol. 12. No. 10. P. 713. https://doi.org/10.3390/toxics12100713.

23. Зенова Г.М., Степанов А.Л., Лихачева А.А., Манучарова Н.А. Практикум по биологии почв. М., Издательство Московского университета, 2002. 120 с.

24. МР 01.018-07. Методика определения токсичности химических веществ, полимеров, материалов и изделий с помощью биотеста "Эколюм". М., ФГУЗ "Федеральный центр гигиены и эпидемиологии" Роспотребнадзора, 2007.

25. Hagner M., Romantschuk M., Penttinen O.-P. et al. Assessing toxicity of metal contaminated soil from glassworks sites with a battery of biotests. Sci. Total Environ. 2018. Vol. 613—614. P. 30—38. https://doi.org/10.1016/j.scitotenv.2017.08.121.

26. Ahlf W., Heise S. Sediment Toxicity Assessment: Rationale for effect classes (5 pp). J. Soils and Sediments. 2005. Vol. 5. P. 16—20. https://doi.org/10.1065/jss2005.01.127.

27. Jawad A.H., Saber S.E.M., Abdulahmed A.S. et al. Characterization and applicability of the natural Iraqi bentonite clay for toxic cationic dye removal: Adsorption kinetic and isotherm study. J. King Saud University— Science. 2023. Vol. 35. No. 4. P. 102630. https://doi.org/10.1016/j.jksus.2023.102630.

28. Wagner A. Toxicity evaluations of nanoclays and an associated nanocomposite throughout their life cycle. PhD thesis. West Virginia University, 2018. 177 с.

29. Janer G., Fernández-Rosas E., Mas del Molino E. et al. In vitro toxicity of functionalised nanoclays is mainly driven by the presence of organic modifiers. Nanotoxicology. 2014. Vol. 8. No. 3. P. 279—294. https://doi.org/10.3109/17435390.2013.776123.


Рецензия

Для цитирования:


Герцен М.М., Переломов Л.В. Оценка токсического действия органоминеральных систем на основе бентонита и ПАВ на биологические тест-объекты. Экология и промышленность России. 2025;29(11):30-35. https://doi.org/10.18412/1816-0395-2025-11-30-35

For citation:


Gertsen M.M., Perelomov L.V. Assessment of Toxic Effect of Organomineral Systems Based on Bentonite and Surfactants on Biological Test Objects. Ecology and Industry of Russia. 2025;29(11):30-35. (In Russ.) https://doi.org/10.18412/1816-0395-2025-11-30-35

Просмотров: 86

JATS XML

ISSN 1816-0395 (Print)
ISSN 2413-6042 (Online)