The Technology of Mapping the Risks of Atmospheric Pollution by Heat and Power Enterprises on the Example of the City of Almaty
https://doi.org/10.18412/1816-0395-2021-4-21-27
Abstract
The technology of mapping of environmental risks during the transfer and transformation of pollutants emitted into the atmosphere of the city by stationary facilities is considered. The technology is implemented on the example of the pollution of the air basin of the city of Almaty with sulfur dioxide SO2 by heat power enterprises. The calculations were made using the WRF-Chem model, previously adjusted to the city atmosphere by parametrizing of microphysical processes and comparing them with observational data at meteorological stations in the city and the surrounding area. Risk maps were constructed according to a variety of impurity concentrations for various meteorological conditions. The following risk measures were used: the mathematical expectation with the exclusion of unlikely bursts of high concentrations (less than 1%) and the recurrence of cases of exceeding of the maximum one-time MPC. The technology can serve as the basis of an information and analytical system for solving of various tasks concerning location of enterprises and the analysis of plans for air protection measures.
About the Authors
E.А. ZakarinKazakhstan
Dr. Sci. (Eng.), Director
T.V. Dedova
Kazakhstan
Cand. Sci. (Eng.), Leading Research Fellow
L.А. Balakay
Kazakhstan
Cand. Sci. (Eng.), Leading Research Fellow
К.А. Bostanbekov
Kazakhstan
Cand. Sci. (Eng.), Junior Research Fellow
References
1. Anenberg S., Belova A., Brandt J., Fann N., Greco S. and etc. Survey of Ambient Air Pollution Health Risk Assessment Tools. Risk Analysis, Special Issue: Air Pollution Health Risks. September 2016. Vol. 36. Iss. 9. P. 1718—1736.
2. U.S.EPA. User's Guide for the AMS/EPA Regulatory Model — AERMOD. EPA-1 454/B-16-011. U.S. Environ. Protection Agency, Research Triangle Park, 2016. NC 2 27711.
3. Р2.1.10.1290-04. Руководство по оценке риска для здоровья населения при воздействии химических веществ, загрязняющих окружающую среду. М., Федеральный центр ГСЭН Минздрава России, 2004. 143 с.
4. Baklanov A., Mahura A., Sokhi R. Integrated systems of meso-meteorological and chemical transport models. Springer, 2010. 190 p. ISBN 978-3-642-13979-6.
5. MIKE21 and MIKE 3 Flow Model FM. Hydrodynamic and Transport Module, Scientific Documentation. Danish Hydraulic Institute, Horsholm, Denmark, 2017. 64 p.
6. Zakarin E.A., Kim D.K. A Stochastic Model of Biota Damage in the Case of Accidental Pollution of Environment. Journal of Applied and Industrial Mathematics. 2014. Vol. 8. No. 1. P. 143—151.
7. Grell G., Fast J., Gustafson W.I., Peckham S.E., McKeen S., Salzmann M., Freita S. On-line Chemistry within WRF. Description and Evaluation of a State-of-the-Art Multiscale Air Quality and Weather Prediction Model In book: Integrated Systems of Meso-Meteorological and Chemical Transport Models. Springer, 2010. P. 41—54. DOI: 10.1007/978-3-642-13980-2_3.
8. Закарин Э.А., Балакай Л.А., Бостанбеков К.А., Дедова Т.В., Жетписов Р.А. Математическое моделирование рисков загрязнения воздушного бассейна города. Гидрометеорология и экология. 2019. № 2. С. 50—61.
9. National Centers for Environmental Prediction/National Weather Service/NOAA/U.S. Department of Commerce (2015): NCEP GDAS/FNL 0.25 Degree Global Tropospheric Analyses and Forecast Grids. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory. DOI: 10.5065/D65Q4T4Z.
10. Solbakken K., Birkelund Y. Evaluation of the Weather Research and Forecasting (WRF) model with respect to wind in complex terrain. Journal of Physics: Conference Series. 2018. [Электронный ресурс]. URL: https://iopscience.iop.org/article/
11. 1088/1742-6596/1102/1/012011 (дата обращения 02.10.2020).
12. Mauree D., Blond N., Clappier A. Multi-scale modeling of the urban meteorology: Integration of a new canopy model in the WRF model. Urban Climate. 2018. DOI: 10.1016/j.uclim.2018.08.002.
13. Skamarock W.C., Klemp J. B., Dudhia J., Gill D.O., Liu Z., Berner J., Wang W., Powers J.G., Duda M.G., Barke D.M., Huang X.-Y. A Description of the Advanced Research WRF Version 4. NCAR Tech. Note NCAR/TN-556+STR, 2019. 145 p. DOI: 10.5065/1dfh-6p97.
14. Stockwell W., Middelton P., Chang J. The Second Generation Regional Acid Deposition Model Chemical Mechanism for Regional Air Quality Modeling. J. of Geophysical Research Atmospheres. 1990. 95(D10). P. 16343—18367. DOI: 10.1029/JD095iD10p16343.
15. Погода в 243 странах мира [Электронный ресурс]. URL: http://rp5.kz/docs/about/ru (дата обращения 02.10.2020).
16. Вишняков Я.Д., Радаев Н.Н. Общая теория рисков. М., Академия, 2008. 368 с.
17. РД 52.04.667-2005 "Документы о состоянии загрязнения атмосферы в городах для информирования государственных органов, общественности и населения. Общие требования к разработке, построению, изложению и содержанию". [Электронный ресурс]. URL: https://meganorm.ru/Data2/1/4293791/4293791180.htm (дата обращения 02.10.2020).
Review
For citations:
Zakarin E., Dedova T., Balakay L., Bostanbekov К. The Technology of Mapping the Risks of Atmospheric Pollution by Heat and Power Enterprises on the Example of the City of Almaty. Ecology and Industry of Russia. 2021;25(4):21-27. (In Russ.) https://doi.org/10.18412/1816-0395-2021-4-21-27