

Biodegradable Polymers: Prospects of Their Large-Scale Application in Industry of Russia
https://doi.org/10.18412/1816-0395-2015-8-20-25
Abstract
The possibility of a wider use of bioplastics is discussed in connection with the appearing environmental situation and growing application rates of polymer materials. Scientific researches of most promising biodegradable polymers such as polylactide and poly-3-hydroxobutirate are presented and advantages and disadvantages of these polymers are mentioned. We can refer the method of their preparation from the renewable vegetable feedstock and ability to decompose to CO2 and water to their advantages, while the cost of these polymers and absence of legislative framework relative to biopolymers are disadvantageous. Nevertheless, biopolymers should be introduced more actively into industry of Russia in connection with constantly worsening environmental situation and limited oil reserves.
About the Authors
Yu.V. TertyshnayaRussian Federation
Cand. Sci. (Chem.), Senior Researcher
L.S. Shibryaeva
Russian Federation
Dr. Sci. (Chem.), Leading Researcher
References
1. URL: http://lifeglobe.net/blogs/details?id=445
2. Саликов П.Ю. Пиролизная утилизация использованных изделий из полиэтилентерефталата // ЭКиП. 2014. Март. С.16.
3. Сыченко Д.В., Володин А.М., Ларичкин В.В., Черкасова Н.Ю. Утилизация полимерных отходов методом термического разложения с получением сферических частиц углерода // ЭКиП. 2014. Октябрь. С.16.
4. Аксенова Н.А. Рынок полимерных материалов // Тара и упаковка. 2011. № 2. С.18.
5. Белова М.С., Легонькова О.А. Проблемы утилизации упаковочных материалов в России и за рубежом // Пищевая промышленность. 2011. № 6. С.26.
6. Химический журнал. Приложение: Пласт. 2010. № 6 — 7. С.8
7. Подзорова М.В., Тертышная Ю.В. Перспективы применения полимерных материалов в сельском хозяйстве // Сельскохозяйственные машины и техника. 2014. № 5. С.43.
8. Bang G., Kim S. Biodegradable poly(lactic acid) — based hybrid coating materials for food packaging films with gas barrier properties // J Indust. Eng. Chem. 2012. № 18. P.1063.
9. Faludi G., Dora G., Renner K., Móczó J., Pukánszky B. Improving interfacial adhesion in PLA/wood biocomposites. // Composites Sc. and Tech. 2013. V. 89. P.77.
10. Battegazzore D., Bocchini S., Alongi J., Frache A. Plasticizers, antioxidants and reinforcement fillers from hazelnut skin and cocoa by-products: Extraction and use in PLA and PP // Polym. Degrad. Stab. 2014. V. 108. P.297.
11. Wang Y., Weng Y., Wang L. Characterization of interfacial compatibility of polylactic acid and bamboo flour (PLA/BF) in biocomposites // Polym.Test. 2014. V. 36. P.119.
12. Shih Y.-F., Huang C. Polylactic acid /banana fiber biodegradable green composites // J. Polym. Research. 2011. V. 18. Is. 6. P.2335.
13. Tertyshnaya Yu.V, Shibryaeva L.S. Degradation of poly(3-hydroxybutyrate) and its blends during treatment with UV light and water // Polym. Science. Ser. B. 2013. V. 55. № 3-4. P.164.
14. Tertyshnaya Yu.V., Shibryaeva L.S., Popov A.A. Thermooхidative degradation of blends based on poly(3-hydroxybutyrate). Specifics of the process. // Rus. J. of Phys. Chem. 2012. V. 6. № 1. P.38.
15. Tsuji H., Suzuyoshi K., Tezuka Y., Ishida T. Environmental degradation of biodegradable polyesters: 3. Effects of alkali treatment on biodegradation of polycaprolactone and poly-3-hudroxybutyrate films in controlled soil // J of Polymers and the Envir. 2003. V.11. №2. P.57.
16. Deroine M., Le Duigou A., Corre Y —M., Le Gac P., Davies P., Cesar G., Bruzaud S. Seawater accelerated ageing of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) // Polym. Degrad. Stab. 2014. V.105. P. 237.
17. URL: https://www.basf.com/en/company/newsand- media/multimedia/photos/photo-detail.html/pressphotos/corp/en/photos/2013/05/ecovio_photo_4643_01.jpg.html
Review
For citations:
Tertyshnaya Yu., Shibryaeva L. Biodegradable Polymers: Prospects of Their Large-Scale Application in Industry of Russia. Ecology and Industry of Russia. 2015;19(8):20-25. (In Russ.) https://doi.org/10.18412/1816-0395-2015-8-20-25