Улавливание CO2 микроводорослями: от лабораторных исследований к пилотным проектам
https://doi.org/10.18412/1816-0395-2025-11-36-41
Аннотация
На основе условий и результатов лабораторных экспериментов по выращиванию микроводорослей (МКВ) и цианобактерий в атмосфере дымовых газов обоснованы критерии пригодности климатических условий места реализации пилотных проектов для масштабирования технологий улавливания СО2. Описана процедура адаптации штаммов микроводорослей к выращиванию в условиях повышенных концентраций СО2 и дымовых газов, показана достигнутая в лабораторных условиях продуктивность этих штаммов. Сделан вывод о том, что для снижения энергетических затрат при культивировании микроводорослей в климатических условиях России наиболее оптимально использование инфраструктуры тепличных комплексов с полугодовым циклом активного производства.
Ключевые слова
Об авторах
Н. И. ЧерноваРоссия
канд. биол. наук, вед. науч. сотрудник
С. В. Киселева
Россия
канд. физ.-мат. наук, вед. науч. сотрудник
Список литературы
1. Iglina T., Iglin P., Pashchenko D. Industrial CO2 Capture by Algae: A Review and Recent Advances. Sustainability. 2022. 14. 3801. https://doi.org/10.3390/su14073801.
2. Vale M.A., Ferreira, A., Pires J.C.M., Gonçalves A.L. CO2 Capture Using Microalgae. In Advances in Carbon Capture. Woodhead Publishing, Sawston, UK. 2020. Chapter 17. Р. 381—405.
3. Wollmann F., Dietze S., Ackermann J.-U., Bley T., Walther T., Steingroewer J., Krujatz F. Microalgae Wastewater Treatment: Biological and Technological Approaches. Eng. Life Sci. 2019. 19. Р. 860—871. https://doi.org/10.1002/elsc.201900071.
4. Chernova N., Kiseleva S. The Wastewater Using in Technologies of Bio-Oil Production from Microalgae: CO2 Capture and Storage. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Athens, Greece, 14—15 December 2020. Vol. 1037. Р. 012045. https://doi.org/10.1088/1757-899X/1037/1/01204.
5. Власкин М.С., Киселёва С.В., Чернова Н.И. и др. Эффективность поглощения CO2 микроводорослями Arthrospira platensis из смеси, моделирующей дымовые газы. Теплоэнергетика. 2023. №5. С. 57—72.
6. Латыпов О.Р., Лаптев А.Б., Шевляков Ф.Б., Голубев И.А., Шапошников Н.О. Утилизация углекислого газа с учетом климатических особенностей региона. Проблемы сбора, подготовки и транспорта нефти и нефтепродуктов. 2023. Вып. 2 (142). С. 174—194.
7. Sinetova M.A., Sidorov R.A., Starikov A.Y., Voronkov A.S., Medvedeva A.S., Krivova Z.V., Pakholkova M.S., Bachin D.V., Bedbenov V.S., Gabrielyan D.A. et al. Assessment of the biotechnological potential of cyanobacterial and microalgal strains from IPPAS culture collection. Appl. Biochem. Microbiol. 2020, 56, 794—808.
8. Zhongshi He, Jing Wang, Yantao Lia. Recent advances in microalgae- driven carbon capture, utilization, and storage: Strain engineering through adaptive laboratory evolution and microbiome optimization. Green Carbon. 2025. Vol. 3. Iss. 1. P. 74—99. https://doi.org/10.1016/j.greenca.2024.10.001.
9. Zhang L., Zhang B., Zhu X., Chang H., Ou S.,Wang H. Role of Bioreactors in Microbial Biomass and Energy Conversion. In Bioreactors for Microbial Biomass and Energy Conversion. Springer, Singapore, 2018.
10. Gabrielyan D.A., Sinetova M.A., Gabel B.V., Gabrielian A.K., Markelova A.G., Rodionova M.V., Bedbenov V.S., Shcherbakova N.V., Los D.A. Cultivation of Chlorella sorokiniana IPPAS C-1 in flat-panel photobioreactors: From a laboratory to a pilot scale. Life. 2022. 12. 1309.
11. Филиппов С.П. Экономические характеристики технологий улавливания и захоронения диоксида углерода (обзор). Теплоэнергетика. 2022. № 10. С. 17‒31.
12. Gabrielyan D.A., Gabel B.V., Sinetova M.A., Gabrielian A.K., Markelova A.G., Shcherbakova N.V., Los D.A. Optimization of CO2 Supply for the Intensive Cultivation of Chlorella sorokiniana IPPAS C-1 in the Laboratory and Pilot-Scale Flat-Panel Photobioreactors. Life. 2022. 12. 1469. https://doi.org/10.3390/life12101469.
13. Chunzhuk E.A., Grigorenko A.V., Kiseleva S.V. et al. Features of the microalgae and cyanobacteria growth in the flue gas atmosphere with different CO2 concentrations. Sustainability. 2024. Vol. 16. № 7075. P. 1—18.
14. Семененко В.Е. Каталог культур микроводорослей в коллекциях СССР. Изд-во РАН. М., 1991. С. 48, 53—55.
15. Lu Y.M., Xiang W.Z., Wen Y.H. Spirulina (Arthrospira) industry in Inner Mongolia of China: current status and prospects. J Appl Phycol. 2011. Apr. 23(2):265—269. doi: 10.1007/s10811-010-9552-4.
16. Chernova N., Kiseleva S., Vlaskin M., Rafikova Y. Estimation of microalgae resource potential for bio-oil production and sustainable rural development in the climatic conditions of Russia (the Republic of Dagestan). MATEC Web of Conferences. 2018. № 178. P. 09011(1—6).
17. Сайт проекта NASA Prediction Of Worldwide Energy Resources. [Электронный ресурс]. URL: https:// https://power.larc.nasa.gov/ (дата обращения (04.05.2025).
18. Научно-прикладной справочник по климату СССР. Сер. 3. Многолетние данные. Вып. 13. Ч. 1—6. Волгоградская, Ростовская … области. Кн. 1. Л., Гидрометеоиздат, 1990. 725 с.
19. Долгов С.В. Водный потенциал Волгоградской области и его современные изменения. Известия РАН. Сер. Географическая. 2018. № 4. С. 77—88.
Рецензия
Для цитирования:
Чернова Н.И., Киселева С.В. Улавливание CO2 микроводорослями: от лабораторных исследований к пилотным проектам. Экология и промышленность России. 2025;29(11):36-41. https://doi.org/10.18412/1816-0395-2025-11-36-41
For citation:
Chernova N.I., Kiseleva S.V. CO2 Capture by Microalgae: From Laboratory Research to Pilot Projects. Ecology and Industry of Russia. 2025;29(11):36-41. (In Russ.) https://doi.org/10.18412/1816-0395-2025-11-36-41
JATS XML



























