Preview

Ecology and Industry of Russia

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Study of Uranium Mobility in Model Soil Media in the Presence of Metallic Iron and Aluminum

https://doi.org/10.18412/1816-0395-2025-5-64-71

Abstract

The study of uranium mobility in soil media with different pH values at introduction of metal plates Al and Fe to create reducing conditions was carried out. The situation of solid radioactive waste (SRW) disposal at Rosatom facilities was modeled. The forms of uranium in soils were determined by the method of step leaching according to the Clement's scheme. It was revealed that the most effective were acidic media with the addition of peat, where >90 % of U remains in the residual "fixed" fraction binded with organic matter. It was noted that in neutral medium (chernozem) uranium mobility significantly depends on its amount in the system (1 and 5 % by mass), and in alkaline medium excess of carbonates increases uranium mobility due to the formation of uranyl-carbonate complexes in solution. It is confirmed that uranium accumulation is most intensive in acidic and neutral media.

About the Authors

S.M. Sofronova
V.S. Sobolev Institute of Geology and Mineralogy SB RAS
Russian Federation

Engineer



A.E. Boguslavsky
V.S. Sobolev Institute of Geology and Mineralogy SB RAS
Russian Federation

Dr. Sci. (Geol.-Mineral.), Acting Head of Laboratory



O.L. Gaskova
V.S. Sobolev Institute of Geology and Mineralogy SB RAS
Russian Federation

Dr. Sci. (Geol.-Mineral.), Leading Researcher



A.I. Syso
Institute of Soil Science and Agrochemistry SB RAS
Russian Federation

Dr. Sci. (Biology), Research Advisor



References

1. Krot A., Vlasova I., Trigub A. From EXAFS of reference compounds to U(VI) speciation in contaminated environments. Journal of Synchrotron Radiation. 2022. № 29. Р. 303—314. https://doi.org/10.1107/S1600577521013473

2. Romanchuk A.Y., Vlasova I.E., Kalmykov S.N. Speciation of Uranium and Plutonium from Nuclear Legacy Sites to the Environment: A Mini Review. Frontiers in chemistry. 2020. Vol. 8. Р. 630. https://doi.org/10.3389/fchem.2020.00630.

3. Lurdes Dinis М. Fiúza A. Mitigation of Uranium Mining Impacts – A Review on Groundwater Remediation Technologies. Geosciences. 2021. № 11 (6):250. С. 303—314. https://doi.org/10.3390/geosciences11060250.

4. Plessl K., Russ A., Vollprecht D. Application and development of zero-valent iron (ZVI) for groundwater and wastewater treatment. International journal of environmental science and technology. 2023. Vol. 20. P. 6913—6928. https://doi.org/10.1007/s13762-022-04536-7.

5. Wang Y., Wang J., Li P. et al. The adsorption of U(VI) on magnetite, ferrihydrite and goethite. Environmental Technology & Innovation. 2021. Vol. 23. 101615. https://doi.org/10.1016/j.eti.2021.101615.

6. Hattori T., Saito T., Ishida K. et al. The structure of monomeric and dimeric uranyl adsorption complexes on gibbsite: A combined DFT and EXAFS. Geochimica et Cosmochimica Acta. 2009. Vol. 73. Iss. 20. P. 5975—5988. https://doi.org/10.1016/j.gca.2009.07.004.

7. Гончарук В.В., Г.Н. Пшинко Г.Н., Кобец С.А. и др. Влияние природы кислородсодержащих минералов на их сорбционную способность по отношению к U(VI). Радиохимия. 2010. № 3. С. 241—246.

8. Gückel A., Rossberg A., Brendler V. et al. Binary and ternary surface complexes of U(VI) on the gibbsite/water interface studied by vibrational and EXAFS spectroscopy. chemical geology. 2012. Vol. 326—327. P. 27—35. https://doi.org/10.1016/j.chemgeo.2012.07.015.

9. Zhang H., Wang Z., Zhao Y., Pearce C.I., Clark S.B., Rosso K.M. Metal ion (Cr3+, Eu3+, UO2 2+) adsorption on gibbsite nanoplates. Engineered science. 2023. Vol. 24. P. 896—910. https://dx.doi.org/10.30919/es896.

10. Lopez-Odriozola L., Shaw S., Abrahamsen-Mills L. et al. Natrajan Identification and quantification of multiphase U(VI) Speciation on gibbsite with pH using TRLFS and PARAFAC of excitation emission matrices. Science & technology. 2024. Vol. 58. Iss. 40. P. 17916—17925. https://doi.org/10.1021/acs.est.4c06133.

11. Xiang S., Cheng W., Nie X. et al. Zero-valent iron-aluminum for the fast and effective U(VI) removal. Journal of the Taiwan institute of chemical engineers. 2018. Vol. 85. P. 186—192. https://doi.org/10.1016/j.jtice.2018.01.039.

12. Boguslavsky A.E., Gaskova O.L. et al. Environmental monitoring of low-level radioactive waste disposal in electrochemical plant facilities in Zelenogorsk, Russia. Applied geochemistry. 2020. Vol. 119. 104598. https://doi.org/10.1016/j.apgeochem.2020.104598.

13. ГОСТ 26423-85 Почвы. Методы определения удельной электрической проводимости, рН и плотного остатка водной вытяжки. М., Стандартинформ, 2011. 8 с.

14. ГОСТ 12536-2014 Грунты. Методы лабораторного определения гранулометрического (зернового) и микроагрегатного состава. М., Стандартинформ, 2014. 23 с.

15. ГОСТ 17.4.4.01-84 Почвы. Методы определения емкости катионного обмена. М., Стандартинформ, 2008. 7 с.

16. ГОСТ 23740-2016 Грунты. Методы определения содержания органических веществ. М., Стандартинформ, 2017. 12 с.

17. Бондарева Л.Г., Болсуновский А.Я., Сухоруков Ф.В. Оценка миграционной способности трансурановых радионуклидов (241 Am, изотопов Рu) и 152Eu в донных отложениях р. Енисей методом химического фракционирования: модельные эксперименты. Радиохимия. 2005. № 4. C. 379—384.

18. Шваров Ю.В. Алгоритмизация численного равновесного моделирования динамических геохимических процессов. Геохимия. 1999. № 6. С. 646—65.

19. Efremova T.T., Efremov S.P., Kutsenogiy K.P. et al. Biogeochemistry of Fe, Mn, Cr, Ni, Co, Ti, V, Mo, Ta, W, U in lowland peat between the Ob and Tom rivers. Soil Science. 2003. Vol. 5. P. 557—567.

20. Riba O., Scott T.B., Ragnarsdottir K.V., Allen G.C. Reaction mechanism of uranyl in the presence of zero-valent iron nanoparticles. Geochimica et Cosmochimica Acta. 2008. Vol. 72. P. 4047—4057. https://doi.org/10.1016/j.gca.2008.04.041.

21. Noubactep C., Schцner A., Meinrath G. Mechanism of uranium removal from the aqueous solution by elemental iron. Journal of hazardous materials. 2006. Vol. 132. Iss. 2—3. P. 202—212. https://doi.org/10.1016/j.jhazmat.2005.08.047.

22. Лавриненко Е.Н. Fe(II)—Fe(III)-слоевые двойные гидроксиды (green rust). Наночастицы, нанокластеры, нульмерные объекты. 2009. № 4. С. 16—53.

23. Папынов Е.К., Портнягин А.С., Чередниченко А.И., Ткаченко И.А., Модин Е.Б., Майоров В.Ю., Драньков А.Н., Сокольницкая Т.А. и др. Сорбция урана на восстановленных пористых оксидах железа. Доклады академии наук. 2016. Т. 468. № 1. С. 52—56.


Review

For citations:


Sofronova S., Boguslavsky A., Gaskova O., Syso A. Study of Uranium Mobility in Model Soil Media in the Presence of Metallic Iron and Aluminum. Ecology and Industry of Russia. 2025;29(5):64-71. (In Russ.) https://doi.org/10.18412/1816-0395-2025-5-64-71

Views: 150


ISSN 1816-0395 (Print)
ISSN 2413-6042 (Online)