Preview

Ecology and Industry of Russia

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Development of a New Combined Approach to the Synthesis of Complex Oxide Based on LiCo0.5Mn1.5O4

https://doi.org/10.18412/1816-0395-2025-4-15-21

Abstract

A new method of synthesis of cathode materials based on complex oxides of transition metals and lithium of LiCo0.5Mn1.5O4 composition has been developed. A combined approach involving cobalt oxidation by air oxygen barbotage and manganese oxidation by potassium permanganate solution followed by evaporation and heat treatment is proposed. It is confirmed that the compounds ( LiCo0.5Mn1.5O4) obtained using this approach have high physical and chemical characteristics (particle size, specific surface area). The basic technological scheme of synthesis is presented. It is proposed to recycle and regenerate spent solutions and salts in order to return them to certain stages of the technological scheme, when obtaining the final product. It is noted that minimization of wastes, reuse of reagents, reduction of technogenic load on the environment makes the proposed technology more preferable from the ecological point of view.

About the Authors

K.A. Kesarev
Tananaev Institute of Chemistry and Technology of Rare Elements and Mineral Raw Materials – Separate subdivision of the Federal State Budgetary Institution of Science of the Federal Research Center "Kola Science Centre of the Russian Academy of Sciences"
Russian Federation

Research Engineer



R.I. Korneykov
Tananaev Institute of Chemistry and Technology of Rare Elements and Mineral Raw Materials – Separate subdivision of the Federal State Budgetary Institution of Science of the Federal Research Center "Kola Science Centre of the Russian Academy of Sciences"
Russian Federation

Cand. Sci. (Eng.), Deputy Director



V.V. Efremov
Institute of North Industrial Ecology Problems – Separate subdivision of the Federal State Budgetary Institution of Science of the Federal Research Center "Kola Science Centre of the Russian Academy of Sciences
Russian Federation

Cand. Sci. (Eng.), Deputy Director for Science



V.S. Dolmatov
Tananaev Institute of Chemistry and Technology of Rare Elements and Mineral Raw Materials – Separate subdivision of the Federal State Budgetary Institution of Science of the Federal Research Center "Kola Science Centre of the Russian Academy of Sciences"
Russian Federation

Cand. Sci. (Chem.), Research Scientist



References

1. Скундин А.М., Ефимов О.Н., Ярмоленко О.В. Современное состояние и перспективы развития литиевых аккумуляторов. Успехи химии. 2002. Т. 71. № 4. С. 378.

2. Баранчиков Е.В. Трансформация электроэнергетики Австралии в начале XXI века. Социально-экономическая география: теория, методология и практика преподавания. 2022. С. 85—91.

3. Рыжков Д.С., Галиахметова А.Т. Солнечная энергетика в Австралии. Наука и образование: новое время. 2018. № 5(28). С. 82—84. EDN VMHYJJ.

4. Пуцылов И.А., Смирнов К.С., Егоров А.М., Смирнов С.Е. Перспективные электродные материалы литиевых источников тока. М., Изд-во "Компания Спутник+", 2015. 88 с.

5. Тарнопольский В.А. Некоторые тенденции усовершенствования катодных материалов для литий-ионных аккумуляторов. Электрохимическая энергетика. 2008. Т. 8. № 1. С. 3—11.

6. Julien C.M., Mauger A. Review of 5-V electrodes for Liion batteries: status and trends. Ionics. 2013. V. 19. P. 951—988.

7. Kurc B. Sulfolane with LiPF6, LiNTf2 and LiBOB-as a non-Flammable Electrolyte Working in a lithium-ion batteries with a LiNiO2 Cathode. International Journal of Electrochemical Science. 2018. V. 13. №. 6. P. 5938—5955.

8. Махонина Е.В., Первов В.С., Дубасова В.С. Оксидные материалы положительного электрода литий-ионных аккумуляторов. Успехи химии. 2004. Т. 73. № 10. С. 1075—1087.

9. Malpede M. Lithium-ion batteries and fertility in Africa. Journal of Population Economics. 2024. Vol. 37. No. 1. P. 25. DOI 10.1007/s00148-024-01005-y. EDN GZNKIT.

10. Wang K., Ren Q., Gu Zh. et al. A cost-effective and humidity-tolerant chloride solid electrolyte for lithium batteries. Nature Communications. 2021. Vol. 12. No 1. P. 1—11. DOI 10.1038/s41467-021-24697-2. EDN QYZKMM.

11. Kim J.G., Son B., Choi M.J. et al. A review of lithium and non-lithium based solid state batteries. Journal of Power Sources. 2015. Vol. 282. P. 299—322. DOI 10.1016/j.jpowsour.2015.02.054. EDN VFBMRX.

12. Yoon Y.K. et al. Synthesis and characterization of spinel type high-power cathode materials Li MxMn2−xO4 (M = Ni, Co, Cr). Journal of Physics and Chemistry of Solids. 2007. V. 68. № 5—6. P. 780—784.

13. Mahmood W.K., Naje A.N. Study the effect of different temperatures on structural and morphological features of Co-doped LiMnO4. Chem. Methodol. 2022. V. 6(12). P. 985—996.

14. Bai Y. et al. Preparation and characterization of Li2CoMn3O8 thin film cathodes for high energy lithium batteries. Ionics. 2009. V. 15. P. 11—17.

15. West A.R. et al. A novel cathode Li2CoMn3O8 for lithium ion batteries operating over 5 volts. Journal of Materials Chemistry. 1998. V. 8. №. 4. P. 837—839.

16. Kalaiselvi N. et al. Evaluation of fuels for the synthesis of Li2CoMn3O8. Ionics. 2002. V. 8. P. 447—452.

17. Меджидов А.А. и др. Гидротермальный редокссинтез шпинелей кобальта и марганца с использованием нитратов металлов. Бутлеровские сообщения. 2019. Т. 60. № 10. С. 116—123.

18. Brubach J.B. et al. Signatures of the hydrogen bonding in the infrared bands of water. The Journal of chemical physics. 2005. V. 122. № 18. P. 184509. DOI: 10.1063/1.1894929.


Review

For citations:


Kesarev K., Korneykov R., Efremov V., Dolmatov V. Development of a New Combined Approach to the Synthesis of Complex Oxide Based on LiCo0.5Mn1.5O4. Ecology and Industry of Russia. 2025;29(4):15-21. (In Russ.) https://doi.org/10.18412/1816-0395-2025-4-15-21

Views: 362


ISSN 1816-0395 (Print)
ISSN 2413-6042 (Online)