Preview

Ecology and Industry of Russia

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Evaluation of Sodium Ferrate Efficiency in Processes of Meat Industry Wastewater Disinfection

https://doi.org/10.18412/1816-0395-2025-3-48-52

Abstract

The use of sodium ferrate as a disinfectant for industrial wastewater from such groups of pathogenic microorganisms as generalized coliform bacteria (GCB), bacteria of the genus Salmonella, Enterococcaceae and Staphylococcaceae is considered. Several types of wastewater were studied to investigate in more depth the possibility of using sodium ferrate for disinfection. It is shown that the use of sodium ferrate with the addition of 2, 3.5 and 5 vol. % of the current volume of the investigated wastewater samples has a high inactivation of the investigated pathogenic microflora. The most effective concentration for almost complete disinfection of real wastewater from the meat industry for all four microbiological indicators was identified: 5 vol. %.

About the Authors

A.A. Sarantseva
D.I. Mendeleev Russian University of Chemical Technology
Russian Federation

Engineer



P.S. Astakhov
D.I. Mendeleev Russian University of Chemical Technology
Russian Federation

Engineer



E.N. Kuzin
D.I. Mendeleev Russian University of Chemical Technology
Russian Federation

Cand. Sci. (Eng.), Associate Professor



N.E. Kruchinina
D.I. Mendeleev Russian University of Chemical Technology
Russian Federation

Dr. Sci. (Eng.), Dean



References

1. Пальгунов Н.В. Промышленные сточные воды. М., Стройиздат, 2000. 415 с.

2. Воронов Ю.В. и др. Водоотведение и очистка сточных вод. Учебник. Изд. 5-е, доп. и перераб. М., Академия, 2016. 702 с.

3. Кручинина Н.Е., Кузин Е.Н., Азопков С.В. и др. Модификация титанового коагулянта сульфатным способом. Экология и промышленность России. 2017. Т. 21. № 2. С. 24—27. DOI 10.18412/1816-0395-2017-2-24-27.

4. Кузин Е.Н., Кручинина Н.Е. Оценка эффективности использования комплексных титансодержащих коагулянтов в процессах очистки сточных вод машиностроительного производства. Изв. вузов. Химия и хим. технология. 2019. Т. 62. В. 10. С. 140—146. DOI:10.6060/IVKKT.20196210.5939.

5. Kuzin E. Synthesis and Use of Complex Titanium-Containing Coagulant in Water Purification Processes. Inorganics. 2025. V. 13 (1). № 9. https://doi.org/10.3390/inorganics13010009.

6. Хохрякова Е.А. Современные методы обеззараживания воды. М., Издательский центр "Аква-Терм", 2014. 55 с.

7. Лазарева Т.П., Макарчук Г.В. Методы обеззараживания воды. Достоинства и недостатки. Актуальные проблемы военно-научных исследований. 2020. № 7(8). С. 471—476.

8. Брюков М.Г., Дмитрук А.С., Василяк Л.М. и др. Кинетика генерации озона во влажном воздухе УФ-излучением ртутной лампы низкого давления. Прикладная физика. 2020. №. 4. С. 5.

9. Collivignarelli M.C., Abbа A., Benigna I., Sorlini S., Torretta V. Overview of the Main Disinfection Processes for Wastewater and Drinking Water Treatment Plants. Sustainability 2018. Vol. 10. № 86.

10. Jiangning Wu. Huu Doan Disinfection of recycled red-meat-processing wastewater by ozone. 2005. Vol. 80(7). P. 828—833. doi:10.1002/jctb.1324.

11. Lagunas-Solar M.C., Cullor J.S., Zeng N.X. at al. Disinfection of Dairy and Animal Farm Wastewater with Radiofrequency Power. Journal of Dairy Science. 2005. Vol. 88. Iss. 11. P. 4120—4131.

12. Ciro F. B-L., Mehrab M. Slaughterhouse wastewater characteristics, treatment, and management in the meat processing industry: A review on trends and advances. Journal of Environmental Management. 2015. Vol. 161. P. 287—302,

13. Jiang J.Q., Wang S., Panagoulopoulos A. The exploration of potassium ferrate (VI) as a disinfectant/coagulant in water and wastewater treatment. Chemosphere. 2006. Т. 63. № 2. С. 212—219.

14. Thomas M., Drzewicz P., Więckol-Ryk A. et al. Effectiveness of potassium ferrate (VI) as a green agent in the treatment and disinfection of carwash wastewater. Environ Sci Pollut Res. 2022. Vol. 29. P. 8514—8524.

15. Yu J.S., Zhang K., Zhu Q.A. et al. Review of Research Progress in the Preparation and Application of Ferrate(VI). Water. 2023. Vol. 15. № 699. https://doi.org/10.3390/w15040699.

16. Jiang J.Q. Research progress in the use of ferrate (VI) for the environmental remediation.Journal of Hazardous Materials. 2007. V. 146. No 3. С. 617—623.

17. Deng Y., Guan X. Unlocking the potential of ferrate (VI) in water treatment: Toward one-step multifunctional solutions. Journal of Hazardous Materials. 2024. V. 464. P. 132920.

18. Sarantseva A.A., Ivantsova N.A., Kuzin E.N. Investigation of the Process of Oxidative Degradation of Phenol by Sodium Ferrate Solutions. Russian Journal of General Chemistry. 2023. Vol. 93. No. 13. P. 3454—3459.

19. Epishkina J.M., Romanova M.V., Chalenko M.A. et al. Evaluation of Rye Bran Enzymatic Hydrolysate Effect on Gene Expression and Bacteriocinogenic Activity of Lactic Acid Bacteria. Fermentation. 2022. Vol. 8. № 752. https://doi.org/10.3390/fermentation8120752.


Review

For citations:


Sarantseva A., Astakhov P., Kuzin E., Kruchinina N. Evaluation of Sodium Ferrate Efficiency in Processes of Meat Industry Wastewater Disinfection. Ecology and Industry of Russia. 2025;29(3):48-52. (In Russ.) https://doi.org/10.18412/1816-0395-2025-3-48-52

Views: 167


ISSN 1816-0395 (Print)
ISSN 2413-6042 (Online)