Preview

Ecology and Industry of Russia

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Features of Obtaining the Dispersed Gas Phase in Electroflotators

https://doi.org/10.18412/1816-0395-2025-3-10-14

Abstract

The conditions for increasing the energy efficiency of the process of obtaining the dispersed gas phase in electroflotators by optimizing the parameters of the electrode unit operation are studied. As an efficiency criterion, the specific gas yield representing the volumetric flow rate of emitted gases per unit of current strength is taken. Studies on the model of electroflotation cell with a capacity of 5 dm3 were carried out. The influence on the specific gas yield of the ratio of densities of anodic and cathodic currents in the range of 52–2500 A/m2 was analyzed. It is established that the basis of gas release is represented by the cathodic process of molecular hydrogen formation, while the anodic process of oxygen formation can be complicated by electrochemical reactions with anions included in the composition of wastewater. It is revealed that the highest specific gas yield, which is up to 95 % of the theoretically possible, is achieved at the ratio of active surfaces of anodes and cathodes equal to 2:1, respectively, in the range of anodic current density from 150 to 250 A/m2 with cathodic current density from 300 to 500 A/m2. It is concluded that the application of the research results allows increasing the energy efficiency of the process of gas dispersion generation, reducing the dimensions of the electrode block, optimizing the structural solutions in the design of electroflotators.

About the Authors

E.V. Alekseev
Moscow State University of Civil Engineering (National Research University)
Russian Federation

Dr. Sci. (Eng.), Professor



Yа.A. Glushkov
Moscow State University of Civil Engineering (National Research University)
Russian Federation

Post-graduate Student



References

1. Ghernaout D., Elboughdiri N. Electrochemical technology for wastewater treatment: dares and trends. Open Access Library Journal. Jan. 4. 2020. Vol. 7. P. 1—17. doi:10.4236/oalib.1106020.

2. Altunay S., Kilif I.H., Öden M.K., Qakmak B. Pollutant removal from mining processing wastewater by electrochemical method. Journal of global NEST. 2021. Vol. 23. № 2. P. 178—185. https://doi.org/10.30955/gnj.003683.

3. Васюнина Н., Дубова И., Дружинин К., Гильманшина Т. Переработка подшламовых вод глиноземного производства электродиализом. Экология и промышленность России. 2024. Т. 28. № 11. С. 28—32. https://doi.org/10.18412/1816-0395-2024-11-28-32.

4. Martínez-Huitle C.A., Rodrigo M.A., Sirés I., Scialdone O. A critical review on latest innovations and future challenges of electrochemical technology for the abatement of organics in water. Applied Catalysis B: Environmental. 2023. Vol. 328. 5 July. Article 122430. DOI:10.1016/j.apcatb.2023.122430.

5. Kyzas G.Z., Matis K.A. Electroflotation process: A review. Journal of Molecular Liquids. 2016. Vol. 220. August. P. 657—664. https://doi.org/10.1016/j.molliq.2016.04.128.

6. Алексеев Е.В. Физико-химические процессы очистки сточных вод: Монография. М., Издательство АСВ, 2022. 302 с.

7. Xue Y., Feng M., Ding ZM., Wang X., Liu Q., Zuo Y., Liu N., Qi Y., Tang S. Efficient removal and separation of cationic dyes by microbubbles for electroflotation coupling membrane electrosorption. Separation and Purification Technology. 2025. Vol. 354. Part 8. 19 February. Article 129497. https://doi.org/10.1016/j.seppur.2024.129497.

8. De Mota I.D.O., de Castro J.A., de Gуes Casqueira R., de Oliveira J.A.G. Study of electroflotation method for treatment of wastewater from washing soil contaminated by heavy metals. Journal of Materials Research and Technology. 2015. Vol. 4. № 2. P. 109—113. DOI:10.1016/j.jmrt.2014.11.004.

9. Jung M.U., Kim Y.C., Bournival G., Ata S. Industrial application of microbubble generation methods for recovering fine particles through froth flotation: A review of the state-of-the-art and perspectives. Advances in Colloid and Interface Science. 2023. Vol. 322. December. Article 103047. DOI:10.1016/j.cis.2023.103047.

10. Ксенофонтов Б.С. Очистка сточных вод: кинетика флотации и флотокомбайны: монография. М., Форум, Инфра-М, 2020. 255 с.

11. Reza M., Julie Q.S. Electroflotation for treatment of industrial wastewaters: a focused review. Environmсental processes. 2019. № 6. P. 325—353. DOI:10.1007/s40710-019-00348-z.

12. Колесников В.А., Ильин В.И., Колесников А.В. Электрофлотация в очистке сточных вод от нефтепродуктов, красителей, ПАВ, лигандов и биологических загрязнений. Oбзор. Теоретические основы химической технологии. 2019. T. 53. № 2. C. 205—228.

13. Hajlaoui N., Ksentini I., Kotti M., Ben Mansour L. Experimental study of current density and liquid phase electric conductivity effects on bubble size distribution in an electroflotation column. Russian Journal of Electrochemistry. 2019. Vol. 55. № 5. P. 358—363. DOI:10.1134/S1023193519040025.


Review

For citations:


Alekseev E., Glushkov Y. Features of Obtaining the Dispersed Gas Phase in Electroflotators. Ecology and Industry of Russia. 2025;29(3):10-14. (In Russ.) https://doi.org/10.18412/1816-0395-2025-3-10-14

Views: 274


ISSN 1816-0395 (Print)
ISSN 2413-6042 (Online)