Preview

Ecology and Industry of Russia

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Modeling and Technical and Economic Analysis of Supercritical Fluid Methods for Industrial Wastewater Treatment of "Kazanorgsintez" PJSC in Relation to Model Runoff

https://doi.org/10.18412/1816-0395-2025-2-42-48

Abstract

In the software package Aspen Hysys (version 12) with the help of Aspen Process Economic Analyzer, a technical and economic comparison of the possibilities of two different variants for phenol-containing aqueous water waste treatment at "Kazanorgsintez" PJSC using the extraction process and as a result of oxidation of organic components of the water runoff was carried out. Modeling and scaling of these processes for a runoff fed at a mass flow rate of 1000 kg/h was performed An estimation of operating costs for realization of each of the investigated variants is given.

About the Authors

A.R. Gabitova
Kazan National Research Technological University
Russian Federation

Cand. Sci. (Eng.), Associate Professor



A.U. Aetov
Kazan National Research Technological University
Russian Federation

Head of the Laboratory



Z.I. Zaripov
Kazan National Research Technological University
Russian Federation

Dr. Sci. (Eng.), Professor



F.M. Gumerov
Kazan National Research Technological University
Russian Federation

Dr. Sci. (Eng.), Professor, Head of the Department



R.A. Usmanov
Kazan National Research Technological University
Russian Federation

Dr. Sci. (Eng.), Professor



S.V. Mazanov
Kazan National Research Technological University
Russian Federation

Cand. Sci. (Eng.), Associate Professor



References

1. Хайрутдинов В.Ф., Гумеров Ф.М., Хабриев И.Ш. и др. Утилизация древесных железнодорожных шпал с использованием сверхкритического флюидного экстракционного процесса. Экология и промышленность России. 2020. Т. 24. № 9. С. 4—10.

2. Gros Q., Duval J., West C., Lesellier E. On-line supercritical fluid extraction-supercritical fluid chromatography (SFE-SFC) at a glance. A coupling story. TrAC Trends in Analytical Chemistry. 2021. Vol. 144. 116433.

3. Аетов А.У., Усманов Р.А., Мазанов С.В., Гумеров Ф.М. Переработка молибденсодержащего водного стока в сверхкритических условиях. Цветные металлы. 2020. №7. С. 68—73.

4. Мазанов С.В., Фан К.М., Аетов А.У. и др. Окисление органических соединений в сверхкритических флюидных условиях в рамках задачи утилизации промышленных водных стоков ПАО "Нижнекамскнефтехим" И ПАО "Казаньоргсинтез". Экология и промышленность России. 2023. Т. 27. № 4. С. 10—16.

5. Zhang F., Li Yu., Liang Zh., Wu T. Energy conversion and utilization in supercritical water oxidation systems. A review. Biomass and Bioenergy. 2022. Vol. 156. 106322. https://doi.org/10.1016/j.biombioe.2021.106322.

6. Leila M., Ratiba D., Al-Marzouqi Ali-H. Experimental and mathematical modelling data of green process of essential oil extraction: Supercritical CO2 extraction. Materials Today. Proceedings. 2022. Vol. 49. Part 4, P. 1023—1029.

7. Cocero M.J., Sanz M.T., Fernández‐Polanco F. Study of alternatives for the design of a mobile unit for wastewater treatment by supercritical water oxidation. Journal of Chemical Technology and Biotechnology. 2001. Vol. 76. P. 257—264.

8. Zhang F., Chen J., Su Ch., Ma Ch. Energy Consumption and Economic Analyses of a Supercritical Water Oxidation System with Oxygen Recovery. Processes. 2018. Vol. 6. No 11. 224.

9. Donatini F., Gigliucci G., Riccardi J., Schiavetti M., Gabbrielli R. Supercritical water oxidation of coal in power plants with low CO2 emissions. Energy. 2009. Vol. 34. P. 2144—2150.

10. Xiao Z., Qing W., Leming C. Modeling for supercritical water oxidation process of sludge using Aspen plus. Computers Appl. Chem. 2017. Vol. 34. 973.

11. Rodrigues V.H., De Melo M.M.R., Silva C.M. Simulation and techno-economic optimization of the supercritical CO2 extraction of Eucalyptus globulus bark at industrial scale. Journal of Supercritical Fluids. 2019. Vol. 145. P. 169—180.

12. Qian L., Wang Sh., Wan Sh., Zhao Sh., Zhang B. Supercritical water gasification and partial oxidation of municipal sewage sludge. An experimental and thermodynamic study. International Journal of hydrogen energy. 2021. Vol. 46. P. 89—99.

13. Cocero M.J., Alonso E., Torío R., Vallelado D., Sanz T., Fdz-Polanco F. Supercritical Water Oxidation for Poly(ethylene terephthalate) Industry Effluents. Ind. Eng. Chem. Res. 2000. Vol. 39. No 12. P. 4652—4657.

14. Гумеров Ф.М., Зарипов З.И., Мазанов С.В. и др. Некоторые характеристики термодинамических систем и их влияние на эффективность извлечения ценных компонентов промышленного водного стока ПАО "Казань-оргсинтез" методом сверхкритической флюидной экстракции. СКФ-ТП. 2022. Т. 17. № 4. С. 3—13.

15. Mazanov S.V., Phan Q.M., Aetov A.U. et all. Heterogeneous Catalytic and Non-Catalytic Supercritical Water Oxidation of Organic Pollutants in Industrial Wastewaters Effect of Operational Parameters. Journal Symmetry. 2023. Vol. 15 (2). 340.


Review

For citations:


Gabitova A., Aetov A., Zaripov Z., Gumerov F., Usmanov R., Mazanov S. Modeling and Technical and Economic Analysis of Supercritical Fluid Methods for Industrial Wastewater Treatment of "Kazanorgsintez" PJSC in Relation to Model Runoff. Ecology and Industry of Russia. 2025;29(2):42-48. (In Russ.) https://doi.org/10.18412/1816-0395-2025-2-42-48

Views: 141


ISSN 1816-0395 (Print)
ISSN 2413-6042 (Online)