

Prospects of Application of Spent Autocatalysts: Rh Catalysts for Processing of Renewable Citral
https://doi.org/10.18412/1816-0395-2024-12-45-51
Abstract
Data on the activity of model bimetallic catalysts 1%Rh5%Co/ZrO2, 1%Rh5%Cu/ZrO2 and 1%Rh1.5% MnOx/SiO2 in the hydrogenation of renewable citral under mild conditions (70 °C, 10 atm gauge H2) have been obtained. It is shown that the citral hydrogenation rate increases in the series RhCu/ZrO2 < RhMnOx/SiO2 < RhCo/ZrO2, reaching selectivity to citronellal of 70, 78 and 84 %, respectively, at citral conversion of 46 %. It is hypothesized that the presence of impurities of Co, Cu, Mn, silicon oxide and reduced oxides will not affect the hydrogenation activity of Rh in spent autocatalysts.
About the Author
I.L. SimakovaRussian Federation
Cand. Sci. (Chem.), Senior Research Fellow
References
1. https://lenta.ru/news/2024/09/01/kolichestvo-othodov-otrossiyskoy-promyshlennosti-uvelichilos/.
2. Petretto G.L., Vacca G., Addis R., Pintore G., NiedduM., Piras, F., Sogos V., Fancello F., Zara S., Rosa A. Waste Citrus limon Leaves as Source of Essential Oil Rich in Limonene and Citral: Chemical Characterization, Antimicrobial and Antioxidant Properties, and Effects on Cancer Cell Viability. Antioxidants. 2023. Vol. 12. № 1238. https://doi.org/10.3390/antiox12061238.
3. Maki-Arvela P., Kumar N., Kubicka D., Nasir A., Heikkilд T., Lehto V.-P., Sjцholm R., Salmi T., Murzin D.Y. One-pot Citral Transformation to Menthol over Bifunctional Micro- and Meso-porous Metal Modified Catalysts: Effect of Catalyst Support and Metal. J. Mol. Catal. A. Chem. 2005. Vol. 240. P. 72−81.
4. Negoi A., Teinz K., Kemnitz E., Wuttke S., Parvulescu V.I., Coman S.M. Bifunctional Nanoscopic Catalysts for the One-Pot Synthesis of (±)-Menthol from Citral. Top. Catal. 2012. Vol. 55. P. 680−687.
5. Weng J.F., Lu X.X., Gao P.X. Nano-Array Integrated Structured Catalysts: A New Paradigm upon Conventional Wash-Coated Monolithic Catalysts? Catalysts. 2017. Vol. 7. P. 253. doi:10.3390/catal7090253.
6. Kaspar J., Fornasiero P., Hickey N. Automotive Catalytic Converters: Current Status and Some Perspectives. Catal. Today. 2003. Vol. 77. P. 419−449.
7. De Aberasturi D.J., Pinedo R., de Larramendi I.R., de Larramendi R., Rojo T. Recovery by hydrometallurgical extraction of the platinumgroup metals from car catalytic converters. Miner. Eng. 2011. Vol. 24. P. 505−513.
8. Jha M.K., Lee J.C., Kim M.S., Jeong J., Kim B.S., Kumar V. Hydrometallurgical recovery/recycling of platinum by the leaching of spent catalysts: A review. Hydrometallurgy, 2013. Vol. 133.P. 23−32.
9. Cova C.M., Zuliani A, Manno R., Sebastian V., Luque R. Scrap waste automotive converters as efficient catalysts for the continuous-flow hydrogenations of biomass derived chemicals. Green Chem. 2020. Vol. 22. P. 1414−1423.
10. Ekou T., Ekou L., Vicente A., Lafaye G., Pronier S., Especel C., Marecot P. Citral hydrogenation over Rh and Pt catalysts supported on TiO2: Influence of the preparation and activation protocols of the catalysts. Journal of Molecular Catalysis A: Chemical. 2011. Vol. 337. P. 82—88.
11. Ekou T., Vicente A., Lafaye G., Especel C., Marecot P. Bimetallic Rh-Ge and Pt-Ge catalysts supported on TiO2 for citral hydrogenation II. Catalytic properties. Applied Catalysis A: General. 2006. Vol. 314. P. 73—80.
12. Lafaye G., Ekou T., Micheaud-Especel C., Montassier C., Marecot P. Citral hydrogenation over alumina supported Rh-Ge catalysts. Effects of the reduction temperature. Applied Catalysis A: General. 2004. Vol. 257. P. 107—117.
13. Lemus J., Bedia J,. Calvo L., Simakova I.L., Murzin D.Y., Etzold B.J.M., Rodrigues J.J., Gilarranz M.A. Improved Synthesis and Hydrothermal Stability of Pt/C Catalysts Based on Size-Controlled Nanoparticles. Catalysis Science and Technology. 2016. V. 6. N13. P. 5196—5206. DOI: 10.1039/C6CY00403B.
14. Sun M., Lan B., Yu L., Ye F., Song W., He J., Diao G., Zheng Y. Manganese oxides with different crystalline structures: Facile hydrothermal synthesis and catalytic activities. Mater. Lett. 2012. Vol. 86. P. 18—20.
15. Wang Y., Song Z., Ma D., Luo H., Liang D., Bao X. Stud. Surf. Sci. Catal. 2000. Vol. 130. P. 2279—2284.
16. Ehwald H., Ewald H., Gutschick D., Hermann M., Miessner H., Öhlmann G., Schierhorn E. A bicomponent catalyst for the selective formation of ethanol from synthesis gas. Appl. Catal. 1991. Vol. 76. P. 153—169.
17. Wang Y., Song Z., Ma D., Luo H., Liang D., Bao X. Characterization of Rh-based catalysts with EPR, TPR, IR and XPS. J. Mol. Catal. A: Chem. 1999. Vol. 149. P. 51—61.
18. Ghampson I.T., Pecchi G., Fierro J.L.G., Videla A., Escalona A.N. Catalytic hydrodeoxygenation of anisole over Re-MoOx/TiO2 and Re-VOx/TiO2 catalysts. Appl. Catal. B: Env. 2017. Vol. 208. P. 60—74.
19. Maki-Arvela P., Hajek J., Salmi T., Murzin D.Yu. Chemoselective hydrogenation of carbonyl compounds over heterogeneous catalysts. Applied Catalysis A: General. 2005. Vol. 292. P. 1—49.
20. Li B., Hong X., Lin J.-J., Hu G.-S., Yu Q., Wang Y.-J., Luo M.-F., Lu J.-Q. Promoting effect of Ir on the catalytic property of Ru/ZnO catalysts for selective hydrogenation of crotonaldehyde. Applied Surface Science. 2013. Vol. 280. P. 179—185.
21. Bao H., Sun X., Jiang Z., Huang Y., Wang J.J. Structural changes of Rh-Mn nanoparticles inside carbon nanotubes studied by X-ray absorption spectroscopy. Chinese J. Catal. 2014. Vol. 35. P. 1418—1427.
Review
For citations:
Simakova I. Prospects of Application of Spent Autocatalysts: Rh Catalysts for Processing of Renewable Citral. Ecology and Industry of Russia. 2024;28(12):45-51. (In Russ.) https://doi.org/10.18412/1816-0395-2024-12-45-51