

Composition and Transformation of Halogenated Products Contained in Drinking Water Transported through the Urban Water Distribution Network
https://doi.org/10.18412/1816-0395-2024-6-50-57
Abstract
Analysis of the composition and transformation of organic compounds in water obtained at a surface water intake of a large urban agglomeration (by the example of the city of Ufa) and used to arrange water supply for the population and the industrial sector has been carried out. Using gas and liquid chromatography with various types of detection, more than 250 organic compounds in the supplied water have been determined. It has been revealed that when transporting water, the concentration of organic compounds of technogenic nature (phthalates, polyaromatic hydrocarbons, alkylbenzenes, etc.) does not change. It has been concluded that in remote, dead-end and stagnant zones of the urban water distribution network, the presence of additional organic pollutants not identified in drinking water leaving water treatment facilities, has not been detected.
About the Authors
M.Yu. VozhdaevaRussian Federation
Dr. Sci. (Chem.), Head of Laboratory
A.R. Khokhlova
Russian Federation
Cand. Sci. (Chem.), Head of Department
I.A. Melnitsky
Russian Federation
Dr. Sci. (Chem.), Chief Specialist
P.V. Serebriakov
Russian Federation
Chief Engineer
I.V. Perminova
Russian Federation
Dr. Sci. (Chem.), Chief Research Fellow
A.I. Konstantinov
Russian Federation
Cand. Sci. (Legal), Sen. Scientific Researcher
M.A. Malkova
Russian Federation
Cand. Sci. (Chem.), Associate Professor
E.A. Kantor
Russian Federation
Dr. Sci. (Chem.), Professor
References
1. Шахурин В.И., Басаргин С.В., Кушнирук М.Ю. Обеззараживание и защита емкостного оборудования от биологических обрастаний. Водоснабжение и санитарная техника. 2006. № 3. Ч. 1. С. 16—20.
2. Richardson S.D. Environmental Mass Spectrometry: Emerging Contaminants and Current Issues. Analytical Chemistry. 2012. Vol. 84. Р. 747—778.
3. Kosyakov D.S., Ul’yanovskii N.V., Popov M.S., Latkin T.B., Lebedev A.T. Halogenated fatty amides — A brand new class of disinfection byproducts. Water Research. 2017. Vol. 127. P. 183—190.
4. Vozhdaeva M.Y., Kholova A.R., Melnitskiy I.A., Beloliptsev I.I., Vozhdaeva Y.S., Kantor E.A., Lebedev A.T. Monitoring and Statistical Analysis of Formation of Organochlorine and Organobromine Compounds in Drinking Water of Different Water Intakes. Molecules. 2021. Vol. 26. No 7. P. 1852.
5. Bull R.J., Reckhow D.A., Li X., Humpage A.R., Joll C., Hrudey S.E. Potential carcinogenic hazards of non-regulated disinfection by-products: Haloquinones, halo-cyclopentene and cyclohexene derivatives, N-halamines, halonitriles, and heterocyclic amines. Toxicology. 2011. Vol. 286. Р. 1—19.
6. Liu H., Liu R., Tian C., Jiang H., Liu X., Zhang R., Qu J. Removal of natural organic matter for controlling disinfection by-products formation by enhanced coagulation: A case study. Separation and Purification Technology. 2012. Vol. 84. P. 41—45.
7. Countway R.E., Dickhut R.M., Canuel E.A. Polycyclic aromatic hydrocarbon (PAH) distributions and associations with organic matter in surface waters of the York River, VA Estuary. Org. Geochem. 2003. Vol. 34. Р. 209—224.
8. Samios S., Lekkas T., Nikolaou A., Golfinopoulos S. Structural investigations of aquatic humic substances from different watersheds. Desalination. 2007. Vol. 210. P. 125—137.
9. Rodriguez M.J, Serodes J.-B., Levallois P. Behavior of trihalomethanes and haloacetic acids in a drinking water distribution system. Water Research. 2004. Vol. 38. No 20. Р. 4367—4382.
10. Chang E.E., Chiang P.C., Chao S.H., Lin Y.L. Relationship between chlorine consumption and chlorination by-products formation for model compounds. Chemosphere. 2006. Vol. 64. P. 1196—1203.
11. Tung H.-H., Xiе Y.F. Association between haloacetic acid degradation and heterotrophic bacteria in water distribution systems. Water research. 2009. Vol. 43. P. 971—978.
12. Труханова Е.В., Вождаева М.Ю., Кантор Л.И., Кантор Е.А., Мельницкий И.А. Исследование влияния галогенуксусных кислот на результаты определения тригалометанов в воде. Экология и промышленность России. 2011. № 2. С. 41—45.
13. Sun Y.-X., Wu Q.-Y., Hu H.-Y., Tian J. Effect of bromide on the formation of disinfection by-products during wastewater chlorination. Water research. 2009. Vol. 43. P. 2391—2399.
14. Nawrocki J., Bilozor S. Brominated oxidation by-products in drinking water treatment. Journal of Water Supply: Research and Technology — AQUA. 1997. Vol. 46. No 6. P. 304—323.
15. Хоменков В.Г., Шевелев А.Б., Жуков В.Г., Загустина Н.А., Безбородов А.М., Попов В.О. Организация метаболических путей и молекулярно-генетические механизмы биодеградации ксенобиотиков у микроорганизмов (обзор). Прикладная биохимия и микробиология. 2008. Т. 44. № 2. С. 133—152.
Review
For citations:
Vozhdaeva M., Khokhlova A., Melnitsky I., Serebriakov P., Perminova I., Konstantinov A., Malkova M., Kantor E. Composition and Transformation of Halogenated Products Contained in Drinking Water Transported through the Urban Water Distribution Network. Ecology and Industry of Russia. 2024;28(6):50-57. (In Russ.) https://doi.org/10.18412/1816-0395-2024-6-50-57