Preview

Ecology and Industry of Russia

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Challenges in Life Cycle Assessment and Carbon Footprint of Hydrogen

https://doi.org/10.18412/1816-0395-2023-12-48-55

Abstract

An analysis of existing methodological approaches to assessing the life cycle of hydrogen was carried out to determine the level of impact of hydrogen technologies on the environment, including an assessment of their carbon footprint. The features of determining the boundaries of the system, functional unit and other aspects of life cycle assessment are presented. Taking into account the specifics of the fuel and energy complex of the Russian Federation, the carbon footprint of hydrogen was assessed using 5 technologies: steam reforming of natural gas (methane), water electrolysis, gasification of coal and biomass, methane pyrolysis. The results indicate the fundamental importance of the method of electricity production in the comparative assessment of hydrogen production technologies.

About the Authors

E.S. Shirinkina
Perm National Research Polytechnic University
Russian Federation

Cand. Sci. (Eng.), Associate Professor



G.V. Ilinykh
Perm National Research Polytechnic University
Russian Federation

Cand. Sci. (Eng.), Associate Professor



Yu.V. Mozzhegorova
Perm National Research Polytechnic University
Russian Federation

Cand. Sci. (Eng.), Associate Professor



V.N. Korotaev
Perm National Research Polytechnic University
Russian Federation

Dr. Sci. (Eng.), Professor



References

1. A hydrogen strategy for a climate-neutral Europe. [Электронный ресурс] URL: https://ec.europa.eu/energy/sites/ener/files/hydrogen_strategy.pdf (дата обращения: 10.02.2023).

2. Global Hydrogen Review 2021. International Energy Agency. 2021. 222 с. [Электронный ресурс]. URL:https://iea.blob.core.windows.net/assets/3a2ed84c-9ea0-458c-9421-d166a9510bc0/GlobalHydrogenReview2021.pdf (дата обращения: 18.02.2023).

3. Классификация водорода по цвету. [Электронный ресурс]. URL: https://neftegaz.ru/tech-library/energoresursy-toplivo/672526-klassifikatsiya-vodoroda-po-tsvetu/ (дата обращения: 15.02.2023).

4. Hydrogen colours codes. [Электронный ресурс]. URL:https://www.h2bulletin.com/knowledge/hydrogen-colours-codes/ (дата обращения: 18.02.2023).

5. Mehmeti A., Angelis-Dimakis A., Arampatzis G. et al. Life Cycle Assessment and Water Footprint of Hydrogen Production Methods: From Conventional to Emerging Technologies. Environments. 2018. 5: 24. doi:10.3390/environments5020024/.

6. Австралия приступила к коммерческому производству водорода на проекте HESC. [Электронный ресурс]. URL: https://globalenergyprize.org/ru/2023/03/09/avstraliya-pristupilak-kommercheskomu-proizvodstvu-vodoroda-na-proekte-hesc/ (дата обращения 10.03.2023).

7. Osman A.I., Mehta N., Elgarahy A.M. et al. Hydrogen production, storage, utilization and environmental impacts: a review. Environmental Chemistry Letters. 2021. https://doi.org/10.1007/s10311-021-01322-8.

8. Dicle C., Meltem Y. Investigation of hydrogen production methods in accordance with green chemistry principles. International journal of hydrogen energy. 2017. 42. P. 23395—23401. DOI:10.1016/j.ijhydene.2017.03.104/.

9. Kim A., Lee H., Brigljevi´ B., Yoo Y., Kim S., Lim H. Thorough economic and carbon footprint analysis of overall hydrogen supply for different hydrogen carriers from overseas production to inland distribution. Journal of cleaner production. 2021. 316. P. 128326. https://doi.org/10.1016/j.jclepro.2021.128326.

10. Lim D., Kim A., Cheon S., Byun M., Lim Н. Life cycle techno-economic and carbon footprint analysis of H2 production via NH3 decomposition: A Case study for the Republic of Korea. Energy conversion and management. 2021. 250. P. 114881. https://doi.org/10.1016/j.enconman.2021.114881.

11. Dincer I., Acar C. Review and evaluation of hydrogen production methods for better sustainability. International journal of hydrogen energy. 2015. 40. P. 11094—11111. http://dx.doi.org/10.1016/j.ijhydene.2014.12.035.

12. Suleman F., Dincer I., Agelin-Chaab M. Comparative impact assessment study of various hydrogen production methods in terms of emissions. International journal of hydrogen energy. 2016. 41. P. 8364—8375. http://dx.doi.org/10.1016/j.ijhydene.2015.12.225.

13. Lozanovski A., Schuller O., Faltenbacher M. Guidance Document for performing LCAs on Fuel Cells and H₂ Technologies. 2011. 139 p. [Электронный ресурс]. URL:http://hytechcycling.eu/wp-content/uploads/HY-Guidance-Document.pdf (дата обращения: 18.02.2023).

14. Frank E.D., Elgowainy A., Reddi K., Bafana A. Life-cycle analysis of greenhouse gas emissions from hydrogen delivery: A cost-guided analysis. International journal of hydrogen energy. 2021. 46. P. 22670—22683. DOI:10.1016/j.ijhydene.2021.04.078.

15. Bareiß K., De la Ruaa C., Mцcklb M., Hamachera T. Life cycle assessment of hydrogen from proton exchange membrane water electrolysis in future energy systems. Applied Energy. 2019. 237. P. 862—872.

16. Koroneos C., Dompros A., Roumbas G. Hydrogen production via biomass gasification — A life cycle assessment approach. Chemical Engineering and Processing: Process Intensification. 2008. 47(8). P. 1261—1268.

17. Cetinkaya E., Dincer I., Naterer G. Life cycle assessment of various hydrogen production methods. International journal of hydrogen energy. 2012. 37(3). P. 2071—2080. DOI:https://doi.org/10.1016/j.ijhydene.2011.10.064/.

18. Al-Qahtani A., Parkinson B., Hellgardt K., Shaha N., Gonzalo Guillen-Gosalbez G. Uncovering the true cost of hydrogen production routes using life cycle monetization. Applied Energy. 2021. Vol. 281. P. 115958. https://doi.org/10.1016/j.apenergy.2020.115958/.

19. Susmozas A., Iribarren D., Dufour J. Life-cycle performance of indirect biomass gasification as a green alternative to steam methane reforming for hydrogen production. Int J Hydrogen Energy. 2013. 38. P. 9961—9972.

20. Динамика развития коэффициентов выбросов углерода при производстве электрической энергии в России. Европейский банк реконструкции и развития. [Электронный ресурс] URL: https://www.ebrd.com/downloads/sector/eecc/Baseline_Study_Russia_Final_Russian.pdf (дата обращения: 20.02.2023).


Review

For citations:


Shirinkina E., Ilinykh G., Mozzhegorova Yu., Korotaev V. Challenges in Life Cycle Assessment and Carbon Footprint of Hydrogen. Ecology and Industry of Russia. 2023;27(12):48-55. (In Russ.) https://doi.org/10.18412/1816-0395-2023-12-48-55

Views: 304


ISSN 1816-0395 (Print)
ISSN 2413-6042 (Online)