Preview

Ecology and Industry of Russia

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Recycling of Scrap Tires by Exposure to an Arc Discharge with the Addition of Water to Intensify the Formation of Carbon Structures and the Release of a Methane-hydrogen Mixture

https://doi.org/10.18412/1816-0395-2023-12-4-10

Abstract

The paper presents the experimental results with a combined electric arc method for processing rubber waste to produce gases and solids from them. The paper reveals the peculiarity of the applied approach which lies in its effectiveness in the formation of an autonomous gas environment of carbon monoxide and carbon dioxide, which were mainly generated during combustion of an arc discharge in an open air. The optimal operating modes of the arc reactor were identified to ensure an increase in the yield of combustible gases during thermal conversion with the addition of water to the reaction zone. The operating parameters of the arc reactor for processing rubber products to produce graphite-like material with the carbon content of up to 96.7% by weight were clarified.

About the Authors

S.A. Yankovsky
National Research Tomsk Polytechnic University
Russian Federation

Cand. Sci. (Eng.), Research Scientist



G.V. Arysheva
National Research Tomsk Polytechnic University
Russian Federation

Cand. Sci. (Eng.), Junior Research Fellow



K.B. Larionov
T.F. Gorbachev State Technical University
Russian Federation

Cand. Sci. (Eng.), Research Scientist



P.V. Povalyaev
National Research Tomsk Polytechnic University
Russian Federation

Post-graduate Student, Junior Research Fellow



A.Ya. Pak
National Research Tomsk Polytechnic University
Russian Federation

Dr. Sci. (Eng.), Head of Laboratory



References

1. Roychand R., Gravina R.J., Zhuge Y., Ma X., Youssf O., Mills J.E. A comprehensive review on the mechanical properties of waste tire rubber concrete. Construction and Building Materials. Elsevier. 2020. Vol. 237. P. 117651.

2. Jang J.W., Yoo T.S., Oh J.H., Iwasaki I. Discarded tire recycling practices in the United States, Japan and Korea. Resources, Conservation and Recycling. Elsevier, 1998. Vol. 22. № 1—2. P. 1—14.

3. Xu J., Yu J., Xu J., Sun C., He W., Huang J., Li G. High-value utilization of waste tires: A review with focus on modified carbon black from pyrolysis. Science of the Total Environment. Elsevier. 2020. Vol. 742. P. 140235.

4. Martínez J.D., Puy N., Murillo R., García T., Navarro M.V., Mastral A.M. Waste tyre pyrolysis – A review. Renewable and Sustainable Energy Reviews. Elsevier. 2013. Vol. 23. P. 179—213.

5. Martínez J.D., Cardona-Uribe N., Murillo R., García T., Lуpez J.M. Carbon black recovery from waste tire pyrolysis by demineralization: Production and application in rubber compounding. Waste Management. Elsevier. 2019. Vol. 85. P. 574—584.

6. Arora N., Sharma N.N. Arc discharge synthesis of carbon nanotubes: Comprehensive review. Diamond and Related Materials. Elsevier. 2014. Vol. 50. P. 135—150.

7. Hlina M., Hrabovsky M., Kavka T., Konrad M. Production of high quality syngas from argon/water plasma gasification of biomass and waste. Waste Management. Elsevier. 2014. Vol. 34. № 1. P. 63—66.

8. Li N., Wang Z., Zhao K., Shi Z., Gu Z., Xu S. Synthesis of single-wall carbon nanohorns by arc-discharge in air and their formation mechanism. Carbon. Elsevier. 2010. Vol. 48. № 5. P. 1580—1585.

9. Zhao J., Su Y., Yang Z., Wei L., Wang Y., Zhang Y. Arc synthesis of double-walled carbon nanotubes in low pressure air and their superior field emission properties. Carbon. Elsevier. 2013. Vol. 58. P. 92—98.

10. Pak A.Y., Larionov K.B., Kolobova E.N., Slyusarskiy K.V., Bolatova J., Yankovsky S.A., Stoyanovskii V.O., Vassilyeva Y.Z., Gubin V.E. A novel approach of waste tires rubber utilization via ambient air direct current arc discharge plasma. Fuel Processing Technology. Elsevier. 2022. Vol. 227. P. 107111.

11. Helleur R., Popovic N., Ikura M., Stanciulescu M., Liu D. Characterization and potential applications of pyrolytic char from ablative pyrolysis of used tires. Journal of Analytical and Applied Pyrolysis. Elsevier. 2001. Vol. 58—59. P. 813—824.

12. Wu G., Asai S., Sumita M., Yui H. Entropy penalty- induced self-assembly in carbon black or carbon fiber filled polymer blends. Macromolecules. ACS Publications. 2002. Vol. 35. № 3. P. 945—951.

13. Larionov K.B., Slyusarskiy K.V., Kirgina M.V., Gvozdyakov D.V., Bogdanov I.A., Zenkov A.V., Yankovsky S.A., Gubin V.E. Liquid Hydrocarbons Production by the Steam Pyrolysis of Used Tires: Energy Characteristics and Environmental Sustainability. Waste and Biomass Valorization. Springer. 2022. Vol. 13. № 4. P. 2233—2251.

14. Li C., Chen X., Shen L., Bao N. Revisiting the Oxidation of Graphite: Reaction Mechanism, Chemical Stability, and Structure Self-Regulation. ACS Omega. ACS Publications. 2020. Vol. 5. № 7. P. 3397—3404.


Review

For citations:


Yankovsky S., Arysheva G., Larionov K., Povalyaev P., Pak A. Recycling of Scrap Tires by Exposure to an Arc Discharge with the Addition of Water to Intensify the Formation of Carbon Structures and the Release of a Methane-hydrogen Mixture. Ecology and Industry of Russia. 2023;27(12):4-10. (In Russ.) https://doi.org/10.18412/1816-0395-2023-12-4-10

Views: 273


ISSN 1816-0395 (Print)
ISSN 2413-6042 (Online)