

Study of the Toxicity of Welding Aqueous Suspensions Obtained by Hyperbaric Welding
https://doi.org/10.18412/1816-0395-2023-11-34-38
Abstract
It was shown that water-diluted spray after hyperbaric welding area demonstrates pronounced bacteriological inhibition. It was found that water after hyperbaric welding, in addition to growth inhibition, also induces the synthesis of natural inhibitors of living organisms – biocins, which adversely affect the ecosystem. It was concluded that such properties are useful in the economy, in particular, for initiating an increased synthesis of biocines in bioreactors for the purpose of further isolation and inclusion in technologies as natural growth inhibitors.
About the Authors
K.Yu. KirichenkoRussian Federation
Cand. Sci. (Biol.), Leading Research Fellow
V.A. Chernousov
Russian Federation
Research Scientist
I.A. Vakhniuk
Russian Federation
Junior Research Fellow
S.V. Leonov
Russian Federation
Senior Research Fellow
K.S. Golokhvast
Russian Federation
Dr. Sci. (Biol.), Professor
References
1. Tomków J., Świerczyńska A., Landowski M., Wolski A., Rogalski G. Bead-on-Plate Underwater Wet Welding on S700MC Steel. Adv. Sci. Technol. Res. J. 2021. Vol. 15(3). P. 288—296.
2. Wang J., Sun Q., Ma J., Jin P., Sun T., Feng, J. Correlation between wire feed speed and external mechanical constraint for enhanced process stability in underwater wet flux-cored arc welding. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2018. Vol. 233. P. 2061—2073.
3. Fydrych D., Tomków J. Underwater Processing of Materials. Materials. 2022. 15. 4902. https://doi.org/10.3390/ma15144902.
4. Li C., Zhu J., Cai Z.,Mei L., Jiao X., Du X., Wang K. Microstructure and Corrosion Resistance of Underwater Laser Cladded Duplex Stainless Steel Coating after Underwater Laser Remelting Processing. Materials. 2021. Vol. 14 (17). P. 4965.
5. Brand P., Lenz K., Reisgen U., Kraus T. Number size distribution of fine and ultrafine fume particles from various welding processes. Ann. Occup. Hyg. 2013. Vol. 57. P. 305—313.
6. Новиков Н.Н. Измерение вредных факторов, воздействующих на человека — путь к обеспечению здоровья человека. Тр. междунар. симпозиума "Надежность и качество". 2007. Т. 2. С. 124—130.
7. Косарев В.В., Бабанов С.А. Пневмокониозы от промышленных аэрозолей токсико-аллергического действия. Профессиональные болезни. Введение в специальность. Самара, ООО "Офорт", 2013. С. 51—66.
8. Гришагин В.М. Сварочный аэрозоль как основной источник экологической опасности сварочного производства. Экология промышленного производства. 2008. № 2. С. 27—35.
9. Kirichenko K., Zakharenko A., Pikula K., Chaika V., Markina Z., Kholodov A., Tsatsakis A., Golokhvast K., Orlova T., Medvedev S., Waissi G. Dependence of welding fume particle toxicity on electrode type and current intensity assessed by microalgae growth inhibition test. Environmental Research. 2019. Vol. 179. № A. С. 108818.
10. Brätz O., Klett J., Wolf T., Henkel K.-M., Maier H.J., Hassel T. Induction Heating in Underwater Wet Welding–Thermal Input, Microstructure and Diffusible Hydrogen Content. Materials. 2022. Vol. 15. 1417. https://doi.org/10.3390/ma15041417.
Review
For citations:
Kirichenko K., Chernousov V., Vakhniuk I., Leonov S., Golokhvast K. Study of the Toxicity of Welding Aqueous Suspensions Obtained by Hyperbaric Welding. Ecology and Industry of Russia. 2023;27(11):34-38. (In Russ.) https://doi.org/10.18412/1816-0395-2023-11-34-38