Preview

Ecology and Industry of Russia

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Results of Remote Monitoring of Methane Concentration in the Air of Western Siberia Using the On-board Infrared Lidar Complex

https://doi.org/10.18412/1816-0395-2023-11-15-21

Abstract

The description of the developed infrared on-board differential absorption lidar for measuring methane content in the air was presented. The lidar was installed on board of aircraft-laboratory Tu-134 "Optic". Flight tests of the developed lidar and experimental measurements of methane concentration along the vertical routing were carried out in the summer atmosphere of mid-latitudes. Lidar measurements of methane content in the air were analyzed. They were compared with local measurements from the gas analyser installed on board of aircraftlaboratory and the results of preliminary numerical modelling. It was concluded that the on-board lidar can measure methane concentration within background values in the mid-latitude summer atmosphere.

About the Authors

S.V. Yakovlev
V.E. Zuev Institute of Atmospheric Optics SB RAS
Russian Federation

Cand. Sci. (Phys.-Math.), Head of Laboratory



S.A. Sadovnikov
V.E. Zuev Institute of Atmospheric Optics SB RAS
Russian Federation

Cand. Sci. (Phys.-Math.), Head of Laboratory



O.A. Romanovskii
V.E. Zuev Institute of Atmospheric Optics SB RAS
Russian Federation

Dr. Sci. (Phys.-Math.), Deputy Director for Research



References

1. Васильев Б.И., Маннун У.М. ИК лидары дифференциального поглощения для экологического мониторинга окружающей среды. Квантовая электроника. 2006. Т. 36. №9. С. 801—820.

2. Yerasi A., Tandy W.D., Emery W.J., Barton-Grimley R.A. Comparing the theoretical performances of 1.65- and 3.3-μm differential absorption lidar systems used for airborne remote sensing of natural gas leaks. Journal of Applied Remote Sensing. 2018. Vol. 12. No. 2. P. 026030. DOI: 10.1117/1.JRS.12.026030.

3. Riris H., Numata K., Li S., Wu S., Ramanathan A., Dawsey M., Mao J., Kawa R., Abshire J.B. Airborne measurements of atmospheric methane column abundance using a pulsed integrated-path differential absorption lidar. Applied optics. 2012. Vol. 51. No. 34. P. 8296—8305. DOI: 10.1364/AO.51.008296.

4. URL: https://www.picarro.com/ (дата обращения: 17.03.2023).

5. Riris H., Numata K., Wu S., Gonzalez B., Rodriguez M., Scott S., Kawa S., Mao J. Methane optical density measurements with an integrated path differential absorption lidar from an airborne platform. Journal of Applied Remote Sensing. 2017. Vol. 11. No. 3. P. 034001. DOI: 10.1117/1.JRS.11.034001.

6. Fix A., Amediek A., Bьdenbender C., Ehret G., Quatrevalet M., Wirth M., Lцhring J., Kasemann R., Klein J., Hoffmann H.-D., Klein V. Development and First Results of a new Near-IR Airborne Greenhouse Gas Lidar . In Proceedings of the Advanced Solid State Lasers Conference. OSA 2015. Berlin. Germany. 4—9 October 2015. DOI: 10.1364/ASSL.2015.ATh1A.2.

7. Amediek A., Ehret G., Fix A., Wirth M., Budenbender C., Quatrevalet M., Kiemle C., Gerbig C. CHARM-F–a new airborne integrated-path differential-absorption lidar for carbon dioxide and methane observations: measurement performance and quantification of strong point source emissions. Applied Optics. 2017. Vol. 56. No. 18. P. 5182—5197. DOI: 10.1364/AO.56.005182.

8. Fix A., Amediek A., Bovensmann H., Ehret G., Gerbig C., Gerilowski K., Pfeilsticker K., Roiger A., Zцger M. CoMet: An airborne mission to simultaneously measure CO2 and CH4 using lidar, passive remote sensing, and in-situ techniques. EPJ Web of Conferences. 2018. Vol. 176. P. 02003. DOI: 10.1051/epjconf/201817602003.

9. Galkowski M., Jordan A., Rothe M., Marshall J., Koch F.-T., Chen J., Agusti-Panareda A., Fix A., Gerbig C. In situ observations of greenhouse gases over Europe during the CoMet 1.0 campaign aboard the HALO aircraft. Atmospheric Measurement Techniques. 2021. Vol. 14. No. 2. P. 1525—1544. DOI: 10.5194/amt-2020-287.

10. Fiehn A., Kostinek J., Eckl M., Klausner T., Galkowski M., Chen J., Gerbig C., Rцckmann T., Maazallahi H., Schmidt M., Korben P., Necki J., Jagoda P., Wildmann N., Mallaun C., Bun R., Nickl A.-L., Jцckel P., Fix A., Roiger A. Estimating CH4, CO2 and CO emissions from coal mining and industrial activities in the Upper Silesian Coal Basin using an aircraft-based mass balance approach. Atmospheric Chemistry and Physics. 2020. Vol. 20. No. 21. P. 12675—12695. DOI: 10.5194/acp-20-12675-2020.

11. Nickl A.L., Mertens M., Roiger A., Fix A., Amediek A., Fiehn A., Gerbig C., Galkowski M., Kerkweg A., Klausner T., Eckl M., Jöckel P. Hindcasting and forecasting of regional methane from coal mine emissions in the Upper Silesian Coal Basin using the online nested global regional chemistryclimate model MECO(n) (MESSy v2.53). Geoscientific Model Development. 2020. Vol. 13. No. 4. P. 1925—1943. DOI: 10.5194/gmd-13-1925-2020.

12. Kostinek J., Roiger A., Eckl M., Fiehn A., Luther A., Wildmann N., Klausner T., Fix A., Knote C., Stohl A., Butz A. Estimating Upper Silesian coal mine methane emissions from airborne in situ observations and dispersion modeling. Atmospheric Chemistry and Physics. 2021. Vol. 21. No. 11. P. 8791—8807. DOI: 10.5194/acp-21-8791-2021.

13. Barton-Grimley R.A., Nehrir A.R., Kooi S.A., Collins J.E., Harper D.B., Notari A., Lee J., DiGangi J.P., Choi Y., Davis K.J. Evaluation of the High Altitude Lidar Observatory (HALO) methane retrievals during the summer 2019 ACT-America campaign. Atmospheric Measurement Techniques. 2022. Vol. 15. No. 15. P. 4623—4650. DOI: 10.5194/amt-15-4623-2022.

14. Анохин Г.Г., Антохин П.Н., Аршинов М.Ю., Барсук В.Е., Белан Б.Д., Белан С.Б., Давыдов Д.К., Ивлев Г.А., Козлов А.В., Козлов В.С., Морозов М.В., Панченко М.В., Пеннер И.Э., Пестунов Д.А., Сиков Г.П., Симоненков Д.В., Синицын Д.С., Толмачев Г.Н., Филиппов Д.В., Фофонов А.В., Чернов Д.Г., Шаманаев В.С., Шмаргунов В.П. Самолет-лаборатория Ту-134 "Оптик". Оптика атмосферы и океана. 2011. Т. 24. № 09. С. 805—816.

15. Садовников С.А., Яковлев С.В., Романовский О.А., Кравцова Н.С., Харченко О.В. Моделирование тропосферных измерений концентрации метана самолетным лидаром дифференциального поглощения. Известия вузов. Физика. 2023. Т. 66. № 1. C. 131—139. DOI: 10.17223/00213411/66/1/131.


Review

For citations:


Yakovlev S., Sadovnikov S., Romanovskii O. Results of Remote Monitoring of Methane Concentration in the Air of Western Siberia Using the On-board Infrared Lidar Complex. Ecology and Industry of Russia. 2023;27(11):15-21. (In Russ.) https://doi.org/10.18412/1816-0395-2023-11-15-21

Views: 246


ISSN 1816-0395 (Print)
ISSN 2413-6042 (Online)