Preview

Ecology and Industry of Russia

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Identity of the Composition of Colored Technical Gypsum Obtained as Waste of Vanadium Production

https://doi.org/10.18412/1816-0395-2023-5-28-33

Abstract

The results of identity composition of coloured technicl gypsum as a waste product of vanadium production at OAO "EVRAZ Vanadiy Tula" were presented. It was shown that gypsum is converted into anhydrite during heat treatment at 700 °C. It was proved that waste coloring is due to the presence of manganese hydroxide and vanadium oxide, their interaction during heat treatment forms manganese vanadate Mn2V2O7 and changes the color tone of the product. As decorative building materials, it is recommended to use colored gypsum-containing waste and products of their heat treatment.

About the Authors

V.S. Bessmertny
Belgorod State Technological University named aftere V.G. Shukhov
Russian Federation

Dr. Sci. (Eng.), Professor



R.A. Platova
Russian Economic University named after G. V. Plekhanov
Russian Federation

Cand. Sci. (Eng.), Associate Professor



Yu.T. Platov
Russian Economic University named after G. V. Plekhanov
Russian Federation

Dr. Sci. (Eng.), Professor



V.A. Rassulov
All-Russian Research Institute of Mineral Resources named after N.M. Fedorovsky
Russian Federation

Cand. Sci. (Geol.-Mineral.)



M.A. Bondarenko
Belgorod State Technological University named aftere V.G. Shukhov
Russian Federation

Post-graduate Student



S.V. Varfolomeeva
Belgorod State Technological University named aftere V.G. Shukhov
Russian Federation

Post-graduate Student



References

1. Жукова Ю.М., Никулина С.Н., Яковлева О.В., Чериканова Е.А. Анализ основных тенденций развития системы обращения с отходами в России: проблемы и перспективы. Экология и промышленность России. 2020. №24(8). С. 66—71.

2. Van Ewijk S., Stegemann J.A. Recognising waste use potential to achieve a circular economy. Waste Management. 2020. V. 105. P. 1—7.

3. Lushnikova N., Dvorkin L. Sustainability of gypsum products as a construction material. Sustainability of Construction Materials. Woodhead Publishing. 2016. P. 643—681.

4. Romanovski V., Klyndyuk A., Kamarou M. Green approach for low-energy direct synthesis of anhydrite from industrial wastes of lime mud and spent sulfuric acid. Journal of Environmental Chemical Engineering. 2021. V. 9. № 6. 106711.

5. Kamarou M., Korob N., Kwapinski W., Romanovski V. High-quality gypsum binders based on synthetic calcium sulfate dihydrate produced from industrial waste. Journal of Industrial and Engineering Chemistry. 2021. V. 100. P. 324—332.

6. Sáez-Pérez M.P., Durán-Suárez J.A., Verdú-Vázquez A., Gil-López T. Characterization and chromatic evaluation of gypsum-based pastes for construction and heritage restoration.Construction and Building Materials. 2021. V. 307. 124981.

7. Sáez-Pérez M.P., Durán-Suárez J.A., Verdú-Vázquez A., Gil-López T. Study and Characterization of Special Gypsum-Based Pastes for Their Use as a Replacement Material in Architectural Restoration and Construction. Materials. 2022. V. 15. № 17. 5877.

8. Balan E., Aufort J., Pouillé S., Dabos M., Blanchard M., Lazzeri M., Blamart D. Infrared spectroscopic study of sulfate-bearing calcite from deep-sea bamboo coral. European Journal of Mineralogy. 2017. V. 29. № 3. P. 397—408.

9. Bishop J.L., Lane M.D., Dyar M.D., King S.J., Brown A.J., Swayze G.A. Spectral properties of Ca-sulfates: Gypsum, bassanite, and anhydrite. American Mineralogist. 2014. V. 99. № 10. P. 2105—2115.

10. Safarov R.Z., Kargin J.B., Aibuldinov Y.K., Zhandildenova A.K., Makhmutov B.B., Sviderskiy A.K., Vatin N.I. Structure and Content Analysis of Raw Materials for Production of Trimanganese Tetraoxide Pigment. Crystals. 2021. V. 11. № 12. 1460.

11. Chukanov N.V., Varlamov D.A., Pekov I.V., Zubkova N.V., Kasatkin A.V., Britvin S.N. Coupled substitutions in natural MnO (OH) polymorphs: Infrared spectroscopic investigation. Minerals. 2021. V. 11. № 9. 969.

12. Kang L., Zhang M., Liu Z.H., Ooi K. IR spectra of manganese oxides with either layered or tunnel structures. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2007. V. 67. № 3—4. P. 864—869.

13. Julien C.M., Massot M., Poinsignon C. Lattice vibrations of manganese oxides: Part I. Periodic structures. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2004. V. 60. № 3. P. 689—700.

14. Wen J., Jiang T., Sun H., Yu T. Novel Understanding of Simultaneous Extraction of Vanadium and Manganese from Vanadium Slag and Low-Grade Pyrolusite Based on Selective Oxidation—Reduction Roasting. ACS Sustainable Chemistry & Engineering. 2020. V. 8. № 15. P. 5927—5936.

15. Cao G.J., Zheng S.T., Fang W.H., Yang G.Y. (en) Mn2 (V2O7): A 3D manganese vanadate built by Mn—O layers and two types of pillars of V2O7 and en bridges. Inorganic Chemistry Communications. 2010. V. 13. № 7. P. 834—836.


Review

For citations:


Bessmertny V., Platova R., Platov Yu., Rassulov V., Bondarenko M., Varfolomeeva S. Identity of the Composition of Colored Technical Gypsum Obtained as Waste of Vanadium Production. Ecology and Industry of Russia. 2023;27(5):28-33. (In Russ.) https://doi.org/10.18412/1816-0395-2023-5-28-33

Views: 254


ISSN 1816-0395 (Print)
ISSN 2413-6042 (Online)