Preview

Ecology and Industry of Russia

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Oxidation of Organic Compounds in Supercritical Fluid Conditions During Disposal of Industrial Waste Waters of Nizhnekamskneftekhim PJSC and Kazanorgsintez PJSC

https://doi.org/10.18412/1816-0395-2023-4-10-16

Abstract

The study performed on the supercritical aqueous oxidation of organic compounds in the water runoff of Nizhnekamskneftekhim PJSC, which was formed at the stage of epoxidation of propylene with ethylbenzene hydroperoxide during the joint production of propylene and styrene oxide, as well as run-off at PJSC "Kazanorginsez", when obtaining phenol and acetone from "Bisphenol-A" plant. The article studies a continuous operation mode on a flow reactor with induction heating (the drain from PJSC "Nizhnekamneftekhim") and periodic on coming from PJSC "Kazanorginsez". It was identified that close to complete oxidation in the presence of heterogeneous catalysts was achieved in a continuous mode at a temperature of 823 K and an excess of oxygen equal to 4.

About the Authors

S.V. Mazanov
Kazan National Research Technological University
Russian Federation

Cand. Sci. (Eng.), Associate Professor



K.M. Phan
Kazan National Research Technological University
Russian Federation

Post-graduate Student



A.U. Ayetov
Kazan National Research Technological University
Russian Federation

Head of laboratory



R.A. Usmanov
Kazan National Research Technological University
Russian Federation

Dr. Sci. (Eng.), Professor



Z.I. Zaripov
Kazan National Research Technological University
Russian Federation

Dr. Sci. (Eng.), Professor



A.A. Shinkarev
Kazan National Research Technological University
Russian Federation

Cand. Sci. (Geol.-Mineral.), Leading Research Fellow



E.A. Karalin
Kazan National Research Technological University
Russian Federation

Dr. Sci. (Eng.), Professor



F.M. Gumerov
Kazan National Research Technological University
Russian Federation

Dr. Sci. (Eng.), Head of Department



References

1. Федеральная служба государственной статистики: Окружающая среда. Водные ресурсы. [Электронный ресурс]: URL: https://www.gks.ru/folder/11194 (дата обращения: 08.09.2022).

2. Статистика загрязнения воды. [Электронный ресурс]: URL: https://vawilon.ru/statistika-zagrjaznenija-vody (дата обращения: 08.09.2022).

3. Состояние химической отрасли в Республике Татарстан. [Электронный ресурс]: URL: https://lektsii.org/3-121870.html (дата обращения: 07.09.2022).

4. Fedyaeva O.N., Vostrikov A.A. Transformations of Pyrite and Pyrrhotite in Supercritical Water. Russian Journal of Physical Chemistry B. 2017. Vol. 6. № 7, P. 1070—1077.

5. Gumerov F.M., Kayumov R.A., Usmanov R.A., Sagdeev A.A., Abdullin I.Sh., Sharafeev R.F. Waste management in propylene epoxidation process with the use of supercritical fluid media. American J. of Analytical Chemistry. 2012. Vol. 3. Iss. 12A. P. 950—957.

6. Jianqiao Y., Shuzhong W., Yanhui L., Zhuohang J., JieZh., Donghai X., Kai W. Oxidation-sulfidation attacks on alloy 600 in supercritical water containing organic sulfides. Materials Letters. 2020. Vol. 263. P. 1—3.

7. Aki N.V.K.S., Abraham M.A. An economic evaluation of catalytic supercritical water oxidation: comparison with alternative waste treatment technologies. Environmental Progress. 1998. Vol. 17. № 4. P. 246—255.

8. Li J., Wang S., Li Y., Wang L., Xu T., Zhang Y., Jiang Z. Supercritical water oxidation of semi-coke wastewater: effects of operating parameters, reaction mechanism and process enhancement. Sci. Total Environ. 2020. Vol. 710. P. 1—11.

9. Kazemi N., Tavakoli O., Seif S., Nahangi M. Highstrength distillery wastewater treatment using catalytic sub- and supercritical water. J. Supercrit. Fluids. 2015. Vol. 97. P. 74—80.

10. Al-Atta A., Huddle T., Rodrнguez Y.G., Mato F., Cocero M.J., Gomes R., Lester E. A techno-economic assessment of the potential for combining supercritical water oxidation with ‘in-situ’ hydrothermal synthesis of nanocatalysts using a counter current mixing reactor. Chem. Eng. J. 2018. Vol. 344. P. 431—440.

11. Bineesh K.V., Kim D.K., Kim M.I., Park D.W. Design, synthesis and characterization of vanadia-doped iron-oxide pillared montmorillonite clay for the selective catalytic oxidation of H2S. Dalton Trans. 2011. V. 40. P. 3938—3945.

12. Doff D.H., Gangas N.H.J., Allan J.E.M. Preparation and Characterization of Iron Oxide Pillared Montmorillonite. ClayMinerals. 1988. Vol. 23. P. 367—377.

13. Earnshaw A., Figgis B.N., Lewis J. Chemistry of polynuclear compounds. Part VI. Magnetic properties of trimeric chromium and iron carboxylates. Journal of the Chemical Society A: Inorganic, Physical, Theoretical. 1966. P. 1656—1663.

14. Aisawa S. Synthesis and thermal decomposition of Mn—Al layered double hydroxides. Journal of Solid State Chemistry. 2002. Т. 167. №. 1. Р. 152—159.

15. Gumerov F.M., Usmanov R.A., Aetov A.U., Gabitov I.R., S.V. Mazanov, Gabitov R.R., Zaripov Z.I. Oxidation of fatty acids by hydrogen peroxide in aqueous medium under supercritical fluid conditions. Mass Spectrometry & Purification Techniques (OMICS). 2017. Vol. 3. Iss. 1. Р. 1—4.


Review

For citations:


Mazanov S., Phan K., Ayetov A., Usmanov R., Zaripov Z., Shinkarev A., Karalin E., Gumerov F. Oxidation of Organic Compounds in Supercritical Fluid Conditions During Disposal of Industrial Waste Waters of Nizhnekamskneftekhim PJSC and Kazanorgsintez PJSC. Ecology and Industry of Russia. 2023;27(4):10-16. (In Russ.) https://doi.org/10.18412/1816-0395-2023-4-10-16

Views: 334


ISSN 1816-0395 (Print)
ISSN 2413-6042 (Online)