

A Concept Scheme for the Joint Processing of Red Sludge and Largetonnage Waste from the Oil and Petrochemical Industries
https://doi.org/10.18412/1816-0395-2023-2-26-31
Abstract
It has been established that in the process of joint heat treatment of a mixture of red mud – quartz-leucoxene concentrate, a change in the chemical composition occurs with the formation of pseudobrookite, which has an increased chemical activity compared to the original quartzleucoxene concentrate. It has been established that the product of the combined heat treatment of red mud and acid tar consists of a mixture of aluminum, iron, and titanium sulfates that are readily soluble in water. Calcium sulfate and silicon compounds have been isolated as insoluble impurities. It is confirmed that in order to achieve the maximum degree of interaction, the mixture of red mud and acid tar must be heated at a rate of no more than 1–2 °C/min until 550 °C and time 60 min.
About the Authors
E.N. KuzinRussian Federation
Cand. Sci. (Eng.), Associate Professor
N.E. Kruchinina
Russian Federation
Dr. Sci. (Eng.), Head of Department
E.V. Kostyleva
Russian Federation
Cand. Sci. (Chem.), Associate Professor
References
1. Matinde E., Simate G.S., Ndlovu S. Mining and metallurgical wastes: a review of recycling and re-use practices. J. S. Afr. Inst. Min. Metall. [online]. 2018. V. 118. N. 8. P. 825—844. http://dx.doi.org/10.17159/2411-9717/2018/v118n8a5.
2. Zhang Y. Introductory Chapter: Metallurgical Solid Waste, Recovery and Utilization of Metallurgical Solid Waste, Intech Open Ltd, London, UK, 2019. 110 p. DOI: 10.5772/intechopen.76826.
3. Кузин Е.Н., Кручинина Н.Е. Получение комплексных коагулянтов на основе крупнотоннажных отходов и продуктов крупнотоннажных отходов промышленных производств. Цветные металлы. 2021. № 1. С. 13—18. DOI: 10.15372/CSD2020244.
4. Кузин Е.Н., Кручинина Н.Е. Получение комплексных коагулянтов на основе минеральных концентратов и их использование в процессах очистки воды. Обогащение руд. 2019. № 3. С. 43—48. DOI: 10.17580/or.2019.03.07.
5. Sadykhov G.B., Zablotskaya Y.V., Anisonyan K.G., Kop’ev D.Y., Olyunina T.V. Extraction of High-Quality Titanium Raw Materials from Leucoxene Concentrates of the Yarega Deposit. Russian Metallurgy (Metally). 2018. № 11. P. 1015—1019. doi: 10.1134/s0036029518110101.
6. Заблоцкая Ю.В., Садыхов Г.Б., Гончаренко Т.В., Олюнина Т.В., Анисонян К.Г., Тагиров Р.К. Особенности процессов автоклавного выщелачивания лейкоксенового концентрата с участием Сa(ОН)2. Металлы. 2011. № 6. С. 9—14.
7. Kopiev D.Yu., Anisonyan K.G., Olyunina T.V., Sadykhov G.B. Effect of the Reducing Roasting Conditions on Sulfuric Acid Recovery of Leucoxene Concentrate. Tsvetnye Metally. 2018. № 11. P. 56—61. DOI: 10.17580/tsm.2018.11.08.
8. Anisonyan K.G., Sadyhov G.B., Olyunina T.V. et al. Magnetizing roasting of leucoxene concentrate. Russian Metallurgy (Metally). 2011. № 11. P. 656—659. https://doi.org/10.1134/S0036029511070020
9. Sadykhov G.B., Zablotskaya Y.V., Anisonyan K.G., Olyunina T.V. Combined use of the leucoxene ores of the Yarega deposit with the formation of synthetic rutile and wollastonite and the recovery of rare and rare-earth elements. Russian Metallurgy (Metally). 2016. № 11. P. 1005—1011. doi:10.1134/s0036029516110136.
10. Zanaveskin K.L., Meshalkin V.P. Chlorination of Quartz-Leucoxene Concentrate of Yarega Field. Metall Mater Trans B. 2020. V. 51. P. 906—915. https://doi.org/10.1007/s11663-020-01810-2.
11. Колмаков Г.А., Яблоков В.А. Проблема утилизации кислых гудронов. Приволжский научный журнал. 2007. № 1. С. 96—102.
12. Колмаков Г.А., Занозина В.Ф., Гришин Д.Ф., Зорин А.Д. Экологический аспект складирования кислых гудронов и их утилизация в товарные нефтепродукты. Нефтехимия. 2007. V. 47. № 6. С. 411—422.
13. Rivera R.M., Ulenaers B., Ounoughene G., Binnemans K., Van Gerven T. Extraction of rare earths from bauxite residue (red mud) by dry digestion followed by water leaching.. Minerals Engineering. 2018. V. 119. P. 82—92. doi:10.1016/j.mineng.2018.01.023.
14. Davris P., Balomenos E., Panias D., Paspaliaris I. Selective leaching of rare earth elements from bauxite residue (red mud), using a functionalized hydrophobic ionic liquid. Hydrometallurgy. 2016. V. 164. P. 125—135. doi:10.1016/j.hydromet.2016.06.012.
15. Akcil A., Akhmadiyeva N.K., Abdulvaliyev R.A., Abhilash Pratima Meshram. Overview On Extraction and Separation of Rare Earth Elements from Red Mud: Focus on Scandium. Mineral Processing and Extractive Metallurgy Review. 2018. V. 39. № 3. P. 145—151. https://doi.org/10.1080/08827508.2017.1288116.
16. Kovács T., Sas Z., Jobbágy V., Csordás A., Szeiler G., Somlai J. Radiological aspects of red mud disaster in Hungary. Acta Geophysica. 2013. V. 61. № 4. P. 1026—1037. doi:10.2478/s11600-013-0113-5.
17. Rai S., Wasewar K., Agnihotri A. Treatment of alumina refinery waste (red mud) through neutralization techniques: A review. Waste Management & Research. 2017. V. 35. № 6. P. 563—580. doi:10.1177/0734242x17696147.
18. Wang M., Liu X. Applications of red mud as an environmental remediation material: A review. Journal of Hazardous Materials. 2020. № 124420. doi:10.1016/j.jhazmat.2020. 124420.
19. Hirota K., Bradt R.C. Sintering and synthesis of the pseudobrookite oxide (Fe2TiO5) by the solid state reaction. Analytical Sciences, 1991. 7(Supple). P. 1275—1278. doi:10.2116/analsci.7.supple_1275.
20. Кузин Е.Н., Кручинина Н.Е., Фадеев А.Б., Носова Т.И. Принципы пиро-гидрометаллургической переработки кварц-лейкоксенового концентрата с формированием фазы псевдобрукита. Обогащение руд. 2021. № 3. С. 33—38. DOI: 10.17580/or.2021.03.06.
Review
For citations:
Kuzin E., Kruchinina N., Kostyleva E. A Concept Scheme for the Joint Processing of Red Sludge and Largetonnage Waste from the Oil and Petrochemical Industries. Ecology and Industry of Russia. 2023;27(2):26-31. (In Russ.) https://doi.org/10.18412/1816-0395-2023-2-26-31