Preview

Ecology and Industry of Russia

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Studying Properties of Hydroconversion Products of Thermolysis Oil Produced from Waste of Mixed Plastics

https://doi.org/10.18412/1816-0395-2023-2-15-21

Abstract

The results of the study of liquid products of hydrogenation processing of thermolysis oil obtained from a mixture of plastic waste are presented. It is established that as a result of hydrogenation processing of thermolysis oil in the conditions of the process of preparation of fuel for catalytic cracking and in the presence of catalysts of this process, hydrogenates with a high content of paraffins and low content of sulfur, nitrogen, condensed aromatic compounds and unsaturated hydrocarbons were obtained. Methods of processing these hydrogenates into motor fuels and feedstock for petrochemicals are proposed.

About the Authors

O.V. Klimov
Boreskov Institute of Catalysis SB RAS
Russian Federation

Cand. Sci. (Chem.), Leading Research Fellow



K.A. Nadeina
Boreskov Institute of Catalysis SB RAS
Russian Federation

Cand. Sci. (Chem.), Senior Research Fellow



A.V. Saiko
Boreskov Institute of Catalysis SB RAS
Russian Federation

Cand. Sci. (Chem.), Research Scientist



V.S. Krestyaninova
Boreskov Institute of Catalysis SB RAS
Russian Federation

Master’s Degree Student



Yu.V. Vatutina
Boreskov Institute of Catalysis SB RAS
Russian Federation

Junior Research Fellow



T.S. Bogomolova
Boreskov Institute of Catalysis SB RAS
Russian Federation

Post-graduate Student, Junior Research Fellow



A.A. Salomatina
Boreskov Institute of Catalysis SB RAS
Russian Federation

Post-graduate Student, Junior Research Fellow



P.A. Dolgushev
Boreskov Institute of Catalysis SB RAS
Russian Federation

Category 2 engineer



References

1. Panda A.K., Singh R.K., Mishra D.K. Thermolysis of waste plastics to liquid fuel A suitable method for plastic waste management and manufacture of value added products — A world prospective. Renewable and Sustainable Energy Reviews. 2010. Vol. 14. P. 233—248. doi:10.1016/j.rser.2009.07.005.

2. Bernardo C.A., Simões C.L., Costa Pinto L.M. Environmental and Economic Life Cycle Analysis of Plastic Waste Management Options. A Review. AIP Conference Proceedings 1779, 140001 (2016); https://doi.org/10.1063/1.4965581.

3. Рзаев К.В. Российский рынок вторичной переработки пластмасс: состояние, тенденции, перспективы. Полимерные материалы. 2018. № 8. С. 8—14.

4. Kaimal V.K., Vijayabalan P. A study on synthesis of energy fuel from waste plastic and assessment of its potential as an alternative fuel for diesel engines. Waste Management. 2016. Vol. 51. P. 91—96. http://dx.doi.org/10.1016/j.wasman.2016.03.003.

5. Anuar Sharuddin S.D., Abnisa F., Wan Daud W.M.A., Aroua M.K. A review on pyrolysis of plastic wastes. Energy Conversion and Management. 2016. Vol. 115. P. 308—326. http://dx.doi.org/10.1016/j.enconman.2016.02.037.

6. Singh R.K., Ruj B., Sadhukhan A.K., Gupta P., Tigga V.P. Waste plastic to pyrolytic oil and its utilization in CI engine: Performance analysis and combustion characteristics. Fuel. 2020. Vol. 262. 116539. https://doi.org/10.1016/j.fuel.2019.116539.

7. Dobo Z., Jakab Z., Nagy G., Koos T., Szemmelveisz K., Muranszky G. Transportation fuel from plastic wastes: Production, purification and SI engine tests. Energy. 2019. Vol. 189. 116353. https://doi.org/10.1016/j.energy.2019.116353.

8. Wang S., Kim H., Lee D., Lee Y.-R., Won Y., Hwang B.W., Hyungseok Nam, Ho-Jung Ryu, Kyong-Hwan Lee. Dropin fuel production with plastic waste pyrolysis oil over catalytic separation. Fuel. 2021. Vol. 305. 121440. https://doi.org/10.1016/j.fuel.2021.121440.

9. Мымрин В.Н. Переработка отходов и рециклинг. Экология и технологии отрасли. Полимерные материалы. 2019. № 11. С. 53—57.

10. Nadeina K.A., Vatutina Yu.V., Mukhacheva P.P., Krestyaninova V., Saiko A.V., Bykova E.S., Romanova T.S., Klimov O.V., Danilevich V.V., Noskov A.S. Influence of the order of the catalysts in the stacked bed of VGO hydrotreating catalysts. Fuel. 2021. Vol. 306. 121672. https://doi.org/10.1016/j.fuel.2021.121672.

11. Рудин М.Г., Сомов В.Е., Фомин А.С. Карманный справочник нефтепереработчика. М., ЦНИИТЭнефтехим, 2004. 336 с.

12. Kumaravel S.T., Murugesan A., Kumaravel A. Tyre pyrolysis oil as an alternative fuel for diesel engines - A review. Renewable and Sustainable Energy Reviews. 2016. Vol. 60. P. 1678—1685. http://dx.doi.org/10.1016/j.rser.2016.03.035.

13. Sadeghbeigi R. Fluid Catalytic Cracking Handbook, Butterworth-Heinemann is an imprint of Elsevier. Third Edition. 2012. Chapter 3. FCC Feed Characterization. P. 51.

14. Stratiev D.S., Shishkova I.K., Dobrev D.S. Fluid catalytic cracking feed hydrotreatment and its severity impact on product yields and quality. Fuel Processing Technology. 2012. Vol. 94. P. 16—25. doi:10.1016/j.fuproc.2011.10.014.

15. Nadeina K.A. , Potapenko O.V., Kazakov M.O., Doronin V.P., Saiko A.V., Sorokina T.P., Kleimenov A.V., Klimov O.V., Noskov A.S. Influence of hydrotreatment depth on product composition of fluid catalytic cracking process for light olefins production. Catal. Today. 2021. 378. P. 2—9. https://doi.org/10.1016/j.cattod.2021.04.014.


Review

For citations:


Klimov O., Nadeina K., Saiko A., Krestyaninova V., Vatutina Yu., Bogomolova T., Salomatina A., Dolgushev P. Studying Properties of Hydroconversion Products of Thermolysis Oil Produced from Waste of Mixed Plastics. Ecology and Industry of Russia. 2023;27(2):15-21. (In Russ.) https://doi.org/10.18412/1816-0395-2023-2-15-21

Views: 414


ISSN 1816-0395 (Print)
ISSN 2413-6042 (Online)