Preview

Ecology and Industry of Russia

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Estimation of Radioecological State at the Objects of the Former Novotroitsk Mining Department, Baley (Zabaykalsky Region)

https://doi.org/10.18412/1816-0395-2022-5-37-43

Abstract

The results of dosimetric measurements which were carried out on the territory of the former Novotroitsk mining department quarry (Baley, Zabaykalsky region) are obtained. The map of radioactive contamination of the quarry territory is presented. A number of objects on the explored area where the gamma ray dose ambient equivalent is exceeds the maximum permissible level of 0.60 mSv/h were identified. The specific effective activity and chemical composition of a soil sample taken at one of the contaminated sites were determined. It is detected that the main source of radioactivity is 232Th nuclide, which is part of the mineral monazite. The possibility of effective concentration of thorium-containing minerals by gravitational separation was shown. The main factor of the spread of radioactive contamination is water erosion of soils from the walls of the quarry.

About the Authors

N.S. Markin
Institute of Chemistry of the Far Eastern Branch of the Russian Academy of Sciences
Russian Federation

engineer



S.I. Ivannikov
Institute of Chemistry of the Far Eastern Branch of the Russian Academy of Sciences
Russian Federation

Cand. Sci. (Chem.), Research Scientist



A.M. Egorin
Institute of Chemistry of the Far Eastern Branch of the Russian Academy of Sciences
Russian Federation

Cand. Sci. (Chem.), Head of Department



References

1. О состоянии и использовании минерально-сырьевых ресурсов Российской Федерации в 2020 году. Государственный доклад. Министерство природных ресурсов и экологии Российской Федерации. М., Всероссийский институт минерального сырья, 2020. 572 с.

2. Bhardwaj S., Soni R., Gupta S.R., Shukla D.P. Mercury, arsenic, lead and cadmium in waters of the Singrauli coal mining and power plants industrial zone, Central East India. Environmental Monitoring and Assessment. 2020. Vol. 192. № 4. Article number 25.

3. Srivastava A., Siddiqui N.A., Koshe R.K., Singh V.K. Human Health Effects Emanating from Airborne Heavy Metals Due to Natural and Anthropogenic Activities. A Review. Advances in Health and Environment Safety. 2017. P. 279—296.

4. Zhou X., Strezov V., Jiang Y., Yang X., Kan T., Evans T. Contamination identification, source apportionment and health risk assessment of trace elements at different fractions of atmospheric particles at iron and steelmaking areas in China. Plos One. 2020. Vol. 15. No. 4. P. 1—18.

5. Wang L., Zhong B., Liang T., Xing B., Zhu Y. Atmospheric thorium pollution and inhalation exposure in the largest rare earth mining and smelting area in China. Science of The Total Environment. 2016. Vol. 572. P. 1—8.

6. Nguyen D.C., Khanh P.L., Jodlowski P., Pieczonka J., Piestrzyński A., Van H.D., Nowak J. Natural Radioactivity at the Sin Quyen Iron-Oxide-Copper-Gold Deposit in North Vietnam. Acta Geophysica. 2016. Vol. 64. No. 6. P. 2305—2321.

7. Атомный проект СССР: документы и материалы [Электронный ресурс]. Электронная библиотека "История Росатома". URL: http://elib.biblioatom.ru/sections/0201/ (дата обращения: 25.10.2021).

8. Ликвидация ядерного наследия: 2008—2015 годы. Под общ. Ред. А.А. Абрамова, О.В. Крюкова, И.И. Линге. М., Изд-во Энергопроманалитика, 2015. 161 с.

9. Sources and effects of ionizing radiation. UNSCEAR 2008 Report. Report to the General Assembly with Scientific Annexes. New York: United Nations Scientific Committee on the Effects of Atomic Radiation. 2010. Vol. 1. 179 p.

10. Benavidez R., Jackson B., Maxwell D., Norton. A review of the (Revised) Universal Soil Loss Equation ((R)USLE): with a view to increasing its global applicability and improving soil loss estimates. K. Hydrology and Earth System Sciences. 2018. Vol. 22. No 11. P. 6059—6086.

11. Khosrokhani M., Pradhan B. Spatio-temporal assessment of soil erosion at Kuala Lumpur metropolitan city using remote sensing data and GIS. Geomatics, Natural Hazards and Risk. 2013. Vol. 5. No. 3. P. 252—270.

12. Chen L., Qian X., Shi Y. Critical Area Identification of Potential Soil Loss in a Typical Watershed of the Three Gorges Reservoir Region. Water Resour Manage. 2011. Vol. 25. P. 3445—3463.

13. Adornado H.A., Yoshida M., Apolinares H.A. Erosion Vulnerability Assessment in REINA, Quezon Province, Philippines with Raster-based Tool Built within GIS Environment. Agricultural Information Research. 2009. Vol. 18. No. 1. P. 24—31.

14. Modeling response of soil erosion and runoff to changes in precipitation and cover. M.A. Nearing, V. Jetten, C. Baffaut, O. Cerdan, A. Couturier, M. Hernandez, Y. Le Bissonnais, M.H. Nichols, J.P. Nunes, C.S. Renschler, V. Souchere, K. van Oost. Catena. 2005. Vol. 61. No. 2—3. P. 131—154.

15. Parveen R., Kumar U. Integrated Approach of Universal Soil Loss Equation (USLE) and Geographical Information System (GIS) for Soil Loss Risk Assessment in Upper South Koel Basin, Jharkhand. Journal of Geographic Information System. 2012. Vol. 4. No. 6. P. 588—596.


Review

For citations:


Markin N., Ivannikov S., Egorin A. Estimation of Radioecological State at the Objects of the Former Novotroitsk Mining Department, Baley (Zabaykalsky Region). Ecology and Industry of Russia. 2022;26(5):37-43. (In Russ.) https://doi.org/10.18412/1816-0395-2022-5-37-43

Views: 328


ISSN 1816-0395 (Print)
ISSN 2413-6042 (Online)