

Study of the Technology of Using Complex Lithium-Сobalt Current Sources Using Combined Processes of Mechanical Processing, Leaching and Extraction
https://doi.org/10.18412/1816-0395-2022-5-10-16
Abstract
It is shown that the disposal of spent complex chemical power sources (CPS) leads to severe environmental pollution. An environmentally safe technology for their disposal has been developed, including the stages of mechanical processing, leaching and extraction. The article discusses the combined processes of processing spent CPS with the use of mechanochemical destruction. The work of opening the CPS on a shredder in an argon atmosphere, knife and ball mills is analyzed. The grinding of model media with different morphology in a drum mill and a toroidal vibrating mill (TVM) was studied, and the operating parameters of the drum mill in a waterfall mode were determined. A narrowing of the granulometric composition from a particle diameter of 2–3 mm to a diameter of 10–40 microns was revealed. It is shown that when CPS particles are ground in a ball mill at a ratio of balls and ground phase of 5:1, the content of cobalt in the powder increases to 19.0 wt %. The time for the complete cycle of CPS processing, including the stages of opening in an argon atmosphere, grinding, grinding, leaching and extraction, was established to be 7 hours.
About the Authors
V.I. NazarovRussian Federation
Cand. Sci. (Eng.), Associate Professor
V.M. Retivov
Russian Federation
Cand. Sci. (Chem.), Acting Director
A.M. Gonopolsky
Russian Federation
Dr. Sci. (Eng.)
D.A. Makarenkov
Russian Federation
Dr. Sci. (Eng.), Associate Professor
A.P. Popov
Russian Federation
Research Scientist
G.R. Aflyatunova
Russian Federation
Research Assistant
References
1. Горчаков Д. Мировой и российский рынок лития — новой нефти энергоперехода [Электронный ресурс]: URL: https://habr.com/ru/company/itsoft/blog/579556/ (дата обращения: 21.02.2022).
2. Ретивов В.М., Гонопольский А.М., Макаренков Д.А. и др. Механохимическая технология утилизации литий-кобальтовых источников тока. Защита окружающей среды в нефтегазовом комплексе. 2021. 6(303). С. 49—53.
3. Xiangping Chen, Tao Zhou. Hydrometallurgical process for the recovery of metal values from spent lithium-ion batteries in citric acid media. Waste Management & Research. 2014. Vol. 32(11). P. 1083—1093.
4. Паспорт безопасности. Оксид кобальта (II,III)/в соответствии с Регламентом (ЕС) №1907/2006 (REACH), с поправками, внесенными 453/2010/ЕС. 2017. 16 с.
5. Назаров В.И., Гонопольский А.М., Макаренков Д.А. и др. Технология утилизации отработанных литиевых источников тока с получением гидроксида и карбоната лития на основе механоактивированных порошков соединений кобальта, марганца и лития. Кокс и химия. 2020. 2. С. 45—52.
6. Velázquez-Martínez O., Valio J., SantasaloAarnio A., Reuter M., Serna-Guerrero R. A Critical Review of Lithium-Ion Battery Recycling Processes from a Circular Economy Perspective. Batteries. 2019. 5(4). P. 68.
7. Вайтехович П.Е., Семененко Д.В. Особенности движения мелющей загрузки в планетарных мельницах с внешней обкаткой. Химическое и нефтегазовое машиностроение. 2005. № 7. С. 7—8.
8. Молчанов В.И., Селезнева О.Г., Жирнов Е.Н. Активация минералов при измельчении. М., Недра, 1988. 208 с.
9. Андреев О.Л., Бушкова О.В., Баталов Н.Н. Расчет термодинамических свойств оксидов кобальта (III, IV) и кобальтита лития. Электрохимическая энергетика. 2006 Т. 6. № 4. С.187—191.
10. Балтийская мануфактура. Сертификат качества литий кобальтат [Электронный ресурс] URL:http://soli.ru/catalog1/soedineniya_kobalta1/litij_kobaltat/ (дата обращения: 21.02.2022).
Review
For citations:
Nazarov V., Retivov V., Gonopolsky A., Makarenkov D., Popov A., Aflyatunova G. Study of the Technology of Using Complex Lithium-Сobalt Current Sources Using Combined Processes of Mechanical Processing, Leaching and Extraction. Ecology and Industry of Russia. 2022;26(5):10-16. (In Russ.) https://doi.org/10.18412/1816-0395-2022-5-10-16