

Treatment of Phenol-Containing Wastewater by the Bacterial Strain Serratia marcescens MT9
https://doi.org/10.18412/1816-0395-2022-2-39-43
Abstract
The features of the phenol and 2,4-dichlorophenol-degrading strain S. marcescens MT9, isolated from the soil of the Ufa (Republic of Bashkortostan) a major producer of organic chemistry products in Russia, are described. Identification of the strain was performed according to the cultural, morphological, physiological, biochemical, morphometric features, as well as the results of the comparative analysis of the 16S rRNA gene sequence. The growth of S. marcescens MT9 in the batch culture with phenol and 2,4-dichlorophenol as sole source of carbon and energy in concentration 100 mg/l was studied. It was established that the phenol and 2,4-dichlorophenol content in the culture liquid was reduced to the 6th day by 82 % and to the 8ths day by 65 % from the control, respectively. The possibility of using S. marcescens MT9 for phenol and 2,4-dichlorophenol utilization in industrial wastewater of petrochemical production and production of tanning extracts has been revealed. The level of wastewater treatment using strain S. marcescens MT9 was 89,3–99,6 %.
About the Authors
V.V. KorobovRussian Federation
Cand. Sci. (Biol.), Senior Research Fellow
E.Yu. Zhurenko
Russian Federation
Cand. Sci. (Biol.), Senior Research Fellow
N.V. Zharikova
Russian Federation
Cand. Sci. (Biol.), Senior Research Fellow
T.R. Iasakov
Russian Federation
Cand. Sci. (Biol.), Senior Research Fellow
Т.V. Markusheva
Russian Federation
Dr. Sci. (Biol.), Senior Research Fellow
References
1. Arutchelvan V., Kanakasabai V., Nagarajan S., Muralikrishnan V. Isolation and identification of novel high strength phenol degrading bacterial strains from phenol-formaldehyde resin manufacturing industrial wastewater. J. Hazard. Mater. 2005. V. 127. N 1—3. P. 238—243.
2. Lallement A., Besaury L., Tixier E., Sancelme M., Amato P., Vinatier V., Canet I., Polyakova O.V., Artaev V.B., Lebedev A.T., Deguillaume L., Mailhot G., Delort A.-M. Potential for phenol biodegradation in cloud waters. Biogeosciences. 2018. V. 15. N 18. P. 5733—5744.
3. Autenrieth R.L., Bonner J.S., Akgerman A., Okaygun M., McCreary E.M. Biodegradation of phenolic wastes. J. Hazard. Mater. 1991. V. 28. N 1—2. P. 29—53.
4. Korobov V.V., Zhurenko E.I., Zharikova N.V., Iasakov T.R., Markusheva T.V. Possibility of using phenol- and 2,4-dichlorophenol-degrading strain, Rhodococcus erythropolis 17S, for treatment of industrial wastewater. Moscow Univ. Biol. Sci. Bull. 2017. V. 72. N 4. Р. 201—205.
5. Tam L.T., Eymann C., Albrecht D., Sietmann R., Schauer F., Hecker M., Antelmann H. Differential gene expression in response to phenol and catechol reveals different metabolic activities for the degradation of aromatic compounds in Bacillus subtilis. Environ. Microbiol. 2006. V. 8. N 8. P. 1408—1427.
6. Chris Felshia S., AshwinKarthick N., Thilagam R., Gnanamani A. Elucidation of 2, 4-dichlorophenol degradation by Bacillus licheniformis strain SL10. Environ. Technol. 2020. V. 41. N 3. P. 366—377.
7. Yao R.-S., Sun M., Wang C.-L., Deng S.-S. Degradation of phenolic compounds with hydrogen peroxide catalyzed by enzyme from Serratia marcescens AB 90027. Water Res. 2006. V. 40. N 16. P. 3091—3098.
8. Karigar C., Mahesh A., Nagenahalli M., Yun D.J. Phenol degradation by immobilized cells of Arthrobacter citreus. Biodegradation. 2006. V. 17. N 1. P. 47—55.
9. Ahmad S.A., Shamaan N.A., Arif N.M., Koon G.B., Shukor M.Y.A., Syed M.A. Enhanced phenol degradation by immobilized Acinetobacter sp. strain AQ5NOL 1. World J. Microbiol. Biotechnol. 2012. V. 28. N 1. P. 347—352.
10. Jiang Y., Wen J., Bai J., Jia X., Hu Z. Biodegradation of phenol at high initial concentration by Alcaligenes faecalis. J. Hazard. Mater. 2007. V. 147. N 1—2. P. 672—676.
11. Liu Y.J., Zhang A.N., Wang X.C. Biodegradation of phenol by using free and immobilized cells of Acinetobacter sp. XA05 and Sphingomonas sp. FG03. Biochem. Eng. J. 2009. V. 44. N 2—3. P. 187—192.
12. Silva I′.S., Santos E.d.C.d., Menezes C.R.d., Faria A.F.D., Franciscon E., Grossman M., Durrant L.R. Bioremediation of a polyaromatic hydrocarbon contaminated soil by native soil microbiota and bioaugmentation with isolated microbial consortia. Bioresource Technol. 2009. V. 100. N 20. P. 4669—4675.
13. Bolshakova A.V., Kiselyova O.I., Yaminsky I.V. Mi crobial surfaces investigated using atomic force microscopy. Biotechnol. Prog. 2004. V. 20. N 6. P. 1615—1622.
14. Chandra R., Raj A., Yadav S., Patel D.K. Reduction of pollutants in pulp paper mill effluent treated by PCP-degrading bacterial strains. Environ. Monit. Assess. 2009. V. 155. N 1—4. P. 1—11.
15. Liu Z., Xie W., Li D., Peng Y., Li Z., Liu S. Biodegradation of phenol by bacteria strain Acinetobacter calcoaceticus PA isolated from phenolic wastewater. Int. J. Environ. Res. Public Health. 2016. V. 13. N 3. P. 300.
Review
For citations:
Korobov V., Zhurenko E., Zharikova N., Iasakov T., Markusheva Т. Treatment of Phenol-Containing Wastewater by the Bacterial Strain Serratia marcescens MT9. Ecology and Industry of Russia. 2022;26(2):39-43. (In Russ.) https://doi.org/10.18412/1816-0395-2022-2-39-43