

Optimization of Air Flow while Using Roadside Protective Shildings in the Urban Highway System
https://doi.org/10.18412/1816-0395-2022-2-26-31
Abstract
Main calculation issues of roadside protective shildings were described. On the basis of the developed visual diagnostics method of air flow structure, a special configuration of protective shildings (discrete shields) was proposed to take into account peculiarities of the movement structure of polluted air stream over the roadway platform.
About the Authors
V.A. ArsiriyUkraine
E.A. Vasiutynska
Ukraine
S.Yu. Smyk
Ukraine
V.A. Chumachenko
Russian Federation
References
1. Baklanov A., Molina L.T., Gauss M. Megacities, air quality and climate. Atmospheric Environment. 2016. Vol. 126. P. 235—249. https://doi.org/10.1016/j.atmosenv.2015.11.059.
2. Karner A.A., Eisinger D.S., Niemeier D.A. NearRoadway Air Quality: Synthesizing the Findings from Real-World Data. Environmental Science & Technology. 2010. Vol. 44. No 14. Р. 5334—5344. https://doi.org/10.1021/es100008x.
3. Grigoratos T., Martini G. Brake wear particle emissions: a review. Environmental Science and Pollution Research. 2014. Vol. 22 No 4. Р. 2491—2504. https://doi.org/10.1007/s11356-014-3696-8.
4. Азаров В.К., Васильев А.В., Кутенев В.Ф. О причинах увеличивающегося загрязнения воздушной среды больших городов взвешенными частицами от эксплуатации автотранспортного комплекса. Экология и промышленность России. 2017. Т. 21. № 8. С. 44—48. https://doi.org/10.18412/1816-0395-2017-8-44-48.
5. Hagler G.S.W., Lin M.-Y., Khlystov A., Baldauf R. W., Isakov V., Faircloth J., Jackson L.E. Field investigation of roadside vegetative and structural barrier impact on near-road ultrafine particle concentrations under a variety of wind conditions. Science of The Total Environment. 2012. Vol. 419. Р. 7—15. https://doi.org/10.1016/j.scitotenv.2011.12.002
6. Васютинська К.А. Оцінка показників екосистемних послуг міських зелених зон залежно від урбогенного навантаження регіонів України. Екологічні науки. 2021. Вип. 1 (34). С. 34—43. https://doi.org/10.32846/2306-9716/2021.eco.7-34.7.
7. Gallagher J., Baldauf R., Fuller C. H., Kumar P., Gill L. W., McNabola A. Passive methods for improving air quality in the built environment: A review of porous and solid barriers. Atmospheric Environment. 2015 Vol. 120. Р. 61—70. https://doi.org/10.1016/j.at mosenv.2015.08.075.
8. Biliaiev M., Biliaieva V., Berlov O., Kozachyna V. Numerical model for air pollution simulation from road transport. East European Scientific Journal. 2021 Vol. 1 No. 5(69). Р. 58—63. https://doi.org/10.31618/ESSA.2782-1994.2021.1.69.45.
9. Pat. No 5,838,587 U.S. Maisotsenko V.S., V.A. Arsiri. Method of restricted space formation for working media motion. 17 Nov. 1998. https://patentimages.storage.googleapis.com/aa/b0/ab/183c93d862432c/US5838587.pdf.
10. Mullyadzhanov R., Abdurakipov S., Hanjalic K. Turbulent kinetic energy evolution in the near field of a rotating-pipe round jet. In book Direct and LargeEddy Simulation X. 2017. Vol. 24. Р. 553—558. (ER COFTAC Series). Springer. https://doi.org/10.1007/978-3-319-63212-4_71.
11. Arsiri V., Kravchenko O. Reconstruction of turbomachines on the basis of the flow structure visual diagnostics. Mechanics and Mechanical Engineering. 2018. Vol. 22. No 2. P. 405—414. https://doi.org/10.2478/mme-2018-0032.
Review
For citations:
Arsiriy V., Vasiutynska E., Smyk S., Chumachenko V. Optimization of Air Flow while Using Roadside Protective Shildings in the Urban Highway System. Ecology and Industry of Russia. 2022;26(2):26-31. (In Russ.) https://doi.org/10.18412/1816-0395-2022-2-26-31