

Adsorbents Made of Inorganic Industrial Waste
https://doi.org/10.18412/1816-0395-2021-12-15-23
Abstract
Data demonstrate the possibility of manufacturing adsorbents by using inorganic industrial waste and provide raw material list for this purpose. Inorganic waste coming from water treatment, mining and construction industries, solid fuel combustion products, spent inorganic sorbents, catalysts and chemical absorbers, chemical, metallurgical and metal finishing industries waste are used as raw materials. Adsorbents production methods by using inorganic industrial waste have been analysed, and parameters of porous structure and adsorbents sorption activity in terms of organic compounds and cations of non-ferrous metals resulting from aqueous medium are listed.
About the Authors
V.V. SamoninRussian Federation
Dr. Science (Eng.), Head of Chair
E.A. Spiridonova
Russian Federation
Cand. Sci. (Eng.), Associate Professor
A.S. Zotov
Russian Federation
Engineer
M.L. Podvyaznikov
Russian Federation
Dr. Sci. (Eng.), Professor
A.V. Garabajiu
Russian Federation
Dr. Sci. (Chem.), Pro-rector for Research
References
1. Цгоев Т.Ф., Теблоев Р.А., Бязрова Д.Б. Отходы производства и потребления. Владикавказ, Северо-Кавказский горно-металлургический институт (Государственный технологический университет), 2020. 423 с.
2. Шилкина С.В. Мировые тенденции управления отходами и анализ ситуации в России. Интернет-журнал "Отходы и ресурсы". 2020. № 1. https://resources.today/PDF/05ECOR120.pdf (доступ свободный).
3. https://studopedia.ru/4_159453_othodi-proizvodstva-ipotrebleniya-obrazovanie-othodov-proizvoditeli-othodov-termini-i-opredeleniya.html.
4. Espejel-Ayala F., Schouwenaars R., Dura′n-Moreno A., Rami′rez-Zamora R.M. Use of drinking water sludge in the production process of zeolites. Res Chem Intermed. 2015. 10.13140/RG.2.1.2299.2481.
5. Makris K.C., Sarkar D., Datta R. Evaluating a drinking-water waste by-product as a novel sorbent for arsenic. Chemosphere. 2006. V. 64. P. 730—741.
6. Ульянова В.В., Собгайда Н.А. Утилизация отходов керамики и сельхозпереработки в сорбционные материалы для очистки стоков от ионов тяжелых металлов. Экология и промышленность России. 2016. Т. 20. № 7. С. 4—9.
7. Deng Y., Wheatley A. Mechanisms of Phosphorus Removal by Recycled Crushed Concrete. International Journal of Environmental Research and Public Health. 2018. 15. 357. 10.3390/ijerph15020357.
8. Kundua S, Kavalakatt S. S., Pal A., Ghosh S. K., Mandal M., Pal T. Removal of arsenic using hardened paste of Portland cement: batch adsorption and column study. Water Research. 2004. V. 38. P. 3780—3790.
9. Petrella A., Spasiano D., Race M., Rizzi V., Cosma P., Liuzzi S., De Vietro N. Porous Waste Glass for Lead Removal in Packed Bed Columns and Reuse in Cement Conglomerates. Materials. 2019. V. 12. № 1. 10.3390/ma12010094.
10. Арасланова Л.Х., Сальманова Э.Р., Соловьева Е.А., Ларькина А.А., Туктарова И.О., Назаров А.М. Исследование эффективности природных и модифицированных сорбентов для очистки сточных вод на основе отходов обработки слюдистых кварцитов. Nanotechnologies in Construction: A Scientific Internet-Journal. Нанотехнологии в строительстве: научный Интернет-журнал. 2019. Т. 11. № 1. С. 106—116.
11. Pacewska B., Szychowski D. Mineral-carbon sorbents based on post-decarbonization lime and mixture of hydrocarbons. Journal of Thermal Analysis and Calorimetry. 2005. V. 80. P. 687—693.
12. Cheira M.F., Mira H.I., Sakr A.K., Mohamed S.A. Adsorption of U(VI) from acid solution on a low-cost sorbent: equilibrium, kinetic, and thermodynamic assessments. NUCL SCI TECH. 2019. V. 30. P. 156.
13. Ханхасаева С.Ц., Дашинамжилова Э.Ц., Бардамова А.Л., Аюрова О.Ж. Сорбционные и ионообменные процессы получение адсорбционных материалов из бентонитовой глины, содержащей органический краситель. Журнал прикладной химии. 2019. Т. 92. Вып. 2. С. 251—256.
14. Zgureva D., Stoyanova V., Shoumkova A., Boycheva S., Avdeev G. Quasi Natural Approach for Crystallization of Zeolites from Different Fly Ashes and Their Application as Adsorbent Media for Malachite Green Removal from Polluted Waters. Crystals. 2020. V. 10. 1064. 10.3390/cryst10111064.
15. Nowak P., Muir B., Solińska A., Franus M., Bajda T. Synthesis and Characterization of Zeolites Produced from Low-Quality Coal Fly Ash and Wet Flue Gas Desulphurization Wastewater. Materials. 2021. V. 14. 1558. 10.3390/ma14061558.
16. Sanna A., Maroto-Valer M.M. Potassium-based sorbents from fly ash for high-temperature CO2 capture. Environ Sci Pollut Res. 2016. V. 23. P. 22242—22252.
17. Styszko K., Szczurowski J., Czuma N., Makowska D., Kistler M., Uruski Ł. Adsorptive removal of pharmaceuticals and personal care products from aqueous solutions by chemically treated fly ash. Int. J. Environ. Sci. Technol. 2018. V. 15. P. 493—506.
18. Balsamo M., Di Natale F., Erto A., Lancia A., Montagnaro F., Santoro L. Reuse of coal combustion ash as sorbent: the effect of gasification treatments. Combust. Sci. Technol. 2012. Vol. 184. P. 956—965.
19. He X., Xu W., Sun W., Ni J. Phosphate removal using compounds prepared from paper sludge and fly ash. Environ Earth Sci. 2013. Vol. 70. P. 615—623.
20. Masahiko K., Shiramizu M., Sato T. Repeatable use of wood ash to remove lead from contaminated water. J Mater Cycles Waste Manag. 2015. V. 17. P. 590—597.
21. Глушанкова И.С., Калинина Е.В., Демина Е.Н. Модифицированные сорбенты на основе шлама содового производства для извлечения ионов тяжёлых металлов из водных растворов и сточных вод. Теоретическая и прикладная экология. 2018. №3. С. 100—108.
22. Salehi1 A., Kani E.N. Green cylindrical mesoporous adsorbent based on alkali-activated phosphorous slag: synthesis, dye removal, and RSM modeling. Adsorption. 2018. Vol. 24. P. 647—666.
23. Na C.-K., Park H., Jho E.H. Utilization of waste bittern from saltern as a source for magnesium and an absorbent for carbon dioxide capture. Environ Sci Pollut Res. 2017. Vol. 24. P. 22980—22989.
24. Rogalewicz B., Czylkowska A., Anielak P., Samulkiewicz P. Investigation and Possibilities of Reuse of Carbon Dioxide Absorbent Used in Anesthesiology. Materials. 2020. Vol. 13. P. 5052. 10.3390/ma13215052.
25. Maskalchuk L.N., Baklai A.A., Leont’eva T.G., Makovskaya N.A. Removal of Cesium Radionuclides from Aqueous Media with an Aluminosilicate Sorbent Prepared from Belaruskalii Production Waste. Radiochemistry. 2019. Vol. 61. № 4. P. 459—463.
26. Bernalte E., Kamieniak J., Randviir E.P., Bernalte-Garciac A., Banks C.E. The preparation of hydroxyapatite from unrefined calcite residues and its application for lead removal from aqueous solutions. RSC (The Royal Society of Chemistry) Adv. 2019. Vol. 9. P. 4054—4062.
27. Самонин В.В., Украинцева Т.В., Григорьева Л.В., Исакова В.Г., Исаков Г.И. Химический поглотитель известковый — основной поглотитель диоксида углерода в пожарном деле, получаемый из отработанного продукта. Альтернативная энергетика и экология. 2008. №9. С. 147—153.
28. Самонин В.В. Изучение кинетики обжига модифицированных известей. ЖФХ. 2000. Т. 74. № 11. С. 2040—2044.
29. Kostura B., Kulveitovaґ H., Lesˇko J. Blast furnace slags as sorbents of phosphate from water solutions. Water Research. 2005. Vol. 39. P. 1795—1802.
30. Mercado-Borrayo B.M., Gonzaґlez-Chaґvez J.L., Ramıґrez-Zamora R.M., Schouwenaars R. Valorization of Metallurgical Slag for the Treatment of Water Pollution: An Emerging Technology for Resource Conservation and Re-utilization. Journal of Sustainable Metallurgy. 2018. N. 4. P. 50—67.
Review
For citations:
Samonin V., Spiridonova E., Zotov A., Podvyaznikov M., Garabajiu A. Adsorbents Made of Inorganic Industrial Waste. Ecology and Industry of Russia. 2021;25(12):15-23. (In Russ.) https://doi.org/10.18412/1816-0395-2021-12-15-23