Preview

Ecology and Industry of Russia

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Utilization Prospects of Carbon Concentrate – a Product of Aluminium Smelting Carbon Dust Processing

https://doi.org/10.18412/1816-0395-2021-11-12-17

Abstract

The possibilities of utilization of technogenic products of aluminum production: coal foam and carbon concentrate (СС) are considered. It is proposed to utilize CC in order to extract valuable components. The regularities of the utilization process of CC by the combustion method have been studied. It was found that the content of germanium in ash is determined by the temperature and the oxygen partial pressure in the system. Gallium is concentrated in ash in an amount of 0.8 wt.% during the combustion in a fluidized bed at a temperature of 1200 °C, the germanium extraction into sublimates reaches 90 %. The results of the leaching of gallium from the ash residue in acidic and basic media are presented; the maximum gallium extraction was 90 and 94 %, respectively.

About the Authors

A.F. Shimanskii
Siberian Federal University
Russian Federation

Dr. Sci. (Chem.), Head of Department



V.N. Losev
Siberian Federal University
Russian Federation

Dr. Sci. (Chem.), Senior Research Fellow



O.V. Buyko
Siberian Federal University
Russian Federation

Cand. Sci, (Chem.), Junior Research Fellow



A.S. Yasinsky
Siberian Federal University
Russian Federation

Cand. Sci. (Eng.), Head of Laboratory



Ya.V. Kazantsev
Siberian Federal University
Russian Federation

Junior Research Fellow



R.G. Eromasov
Siberian Federal University
Russian Federation

Cand. Sci. (Eng.), Associate Professor



References

1. Jassim A., Jabri N.A., Rabbaa S.A., Mofor E.G., Jamal J. Innovative Anode Coating Technology to Reduce Anode Carbon Consumption in Aluminum Electrolysis Cells. Light Metals 2019. The Minerals, Metals & Materials Series. Springer, Cham, 2019. P. 745—752. https://doi.org/10.1007/978-3-030-05864-7_91.

2. Михалев Ю.Г., Поляков П.В., Ясинский А.С., Поляков А.А. Возникновение конусов на аноде алюминиевого электролизера. Цветные металлы. 2018. № 9. С.43—48. https://doi.org/10.17580/tsm.2018.09.06.

3. Xie M., Lv H., Lu T., Zhao H., Li R., Liu F. Characteristic Analysis of Hazardous Waste from Aluminum Reduction Industry. Light Metals 2020. The Minerals, Metals & Materials Series. Springer, Cham, 2020. P. 1261—1266. https://doi.org/10.1007/978-3-030-36408-3_173.

4. Polyakov P., Yasinskiy A., Polyakov A., Zavadyak A., Mikhalev Y., Puzanov I. Anode Overvoltages on the Industrial Carbon Blocks. Light Metals 2019. The Minerals, Metals & Materials Series. Springer, Cham, 2019. P. 811—816. https://doi.org/10.1007/978-3-030-05864-7_99.

5. Кондратьев В.В., Петровская В.Н., Ржечицкий Э.П., Немаров А.А., Иванчик Н.Н. Угольная пена алюминиевых электролизеров и углеродные нанотрубки (УНТ) в ней. Вестник Иркутского государственного технического университета. 2015. № 12 (107). С. 215—223.

6. Пат. 2685566 РФ. Способ переработки угольной пены электролитического производства алюминия. Пингин В.В., Жердев А.С., Богданов Ю.В., Павлов С.Ю., Гущинский А.А., Рожнев А.Н., Малышкин А.В. Заявитель и патентообладатель Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр". Заявл. 07.06.2018. Опубл. 22.04.2019. Бюл. № 12.

7. Пат. 2237740 РФ. Способ извлечения галлия из твердых галлийсодержащих материалов. Сенюта А.С., Давыдов И.В., Дьяченко М.Г. Заявитель и патентообладатель Открытое акционерное общество "Всероссийский алюминиево-магниевый институт". Заявл. 02, 07.02.2003. Опубл. 10.10.2004. Бюл. № 28.

8. Пат. 2092601 РФ. Способ извлечения галлия из твердых тонкодисперсных углеродсодержащих материалов. Комлев М.Ю., Антипина Т.П., Истомин С.П., Кохановский С.А. Заявитель и патентообладатель Товарищество с ограниченной ответственностью "Безотходные и малоотходные технологии". Заявл. 07.08.1992. Опубл. 10.10.1997.

9. Jentoftsen T.E. Behavior of iron and titanium species incryolite-alumina melts (NTNU Open 2001). [Электронный ресурс]. URL: http://hdl.handle.net/11250/248748 (дата обращения 9.03.2021).

10. Shimanskii A., Yasinskiy A., Yakimov I., Losev V., Buyko O., Malyshkin A., Kazantsev Y. Aluminum Smelting Carbon Dust as a Potential Raw Material for Gallium and Germanium Extraction. JOM: The Journal of the Minerals, Metals & Materials Society. 2021. Vol. 73. Iss. 4. P. 1103—1109. https://doi.org/10.1007/s11837-021-04563-8.

11. Xiong Y., Cui X., Zhang M., Wang Y., Lou Z., Shan W. Microwave hydrothermal synthesis of gallotannin/carbon nanotube composites for the recovery of gallium ion. Applied Surface Science. 2020. Vol. 510. P. 145414. https://doi.org/10.1016/j.apsusc.2020.145414.

12. Claeys C.L., Simoen E. Germanium-Based Technologies: from Materials to Devices. Amsterdam, Elsevier B.V., 2007. P. 11—19.

13. Maarefvand M., Sheibani S., Rashchi F. Recovery of gallium from waste LEDs by oxidation and subsequent leaching. Hydrometallurgy. 2020. Vol. 191. P. 105230. https://doi.org/10.1016/j.hydromet.2019.105230.

14. Zhao Z., Yang Y., Xiao Y., Fan Y. Recovery of gallium from Bayer liquor: A review. Hydrometallurgy. 2012. Vol. 125—126. P. 115—124. https://doi.org/10.1016/j.hydromet.2012.06.002.

15. Liu F., Liu Z., Li Y., Liu Z., Li Q., Zeng L. Extraction of gallium and germanium from zinc refinery residues by pressure acid leaching. Hydrometallurgy. 2016. Vol. 164. P. 313—320. https://doi.org/10.1016/j.hydromet.2016.06.006.

16. George M.W. Germanium. Mineral Commodity Summaries 2005. Washington: U.S. Department of the Interior, 2005. P 70—71.

17. Weng W., Jiang B., Wang Z., Xiao W. In situ electrochemical conversion of CO2 in molten salts to advanced energy materials with reduced carbon emissions. Science Advances. 2020. Vol. 6. Iss. 9. P. eaay9278. https://doi.org/10.1126/sciadv.aay9278.

18. Numata H., Bockris J. O’M. Interaction of Gases in Molten Salts: Carbon Dioxide and Oxygen in Cryolite Alunina Melts. Metallurgical Transactions B. 1984. Volume 15B. P. 39—46.

19. Galasiu I., Galasiu R., Thonstad J. Inert Anodes for Aluminum Electrolysis. Dьsseldorf: Aluminum-Verlag, 2007. P. 17—19.

20. Zhang L., Xu Z. A critical review of material flow, recycling technologies, challenges and future strategy for scattered metals from minerals to wastes. Journal of Cleaner Production. 2018. Vol. 202. P. 1001 — 1025. https://doi.org/10.1016/j.jclepro.2018.08.073.

21. Arroyo F., Font O., Chimenos J. M., Fernбndez-Pereira C., Querol X., Coca P. IGCC fly ash valorisation. Optimisation of Ge and Ga recovery for an industrial application. Fuel Processing Technology. 2014. Vol. 124. P. 222—227. https://doi.org/10.1016/j.fuproc.2014.03.004.

22. Nugteren H.W. Fly ash refinement and extraction of useful compounds. Coal Combustion Products (CCP's). Characteristics, Utilization and Beneficiation. Elsevier, 2017. P. 369—387. https://doi.org/10.1016/B978-0-08-100945-1.00015-0.

23. Бок Р. Методы разложения в аналитической химии. Пер. с англ. В.А. Трофимовой. М., Химия, 1984. 428 с.


Review

For citations:


Shimanskii A., Losev V., Buyko O., Yasinsky A., Kazantsev Ya., Eromasov R. Utilization Prospects of Carbon Concentrate – a Product of Aluminium Smelting Carbon Dust Processing. Ecology and Industry of Russia. 2021;25(11):12-17. (In Russ.) https://doi.org/10.18412/1816-0395-2021-11-12-17

Views: 544


ISSN 1816-0395 (Print)
ISSN 2413-6042 (Online)