Preview

Экология и промышленность России

Расширенный поиск
Доступ открыт Открытый доступ  Доступ закрыт Только для подписчиков

Ультразвук в процессах очистки нефтезагрязненных стоков: обзор

https://doi.org/10.18412/1816-0395-2021-3-53-59

Полный текст:

Аннотация

Приведен обзор основных методов очистки нефтезагрязненных стоков, интенсифицированных ультразвуковым воздействием. Отмечены достоинства и недостатки методов. Показано, что ультразвук не заменяет существующие методы очистки нефтезагрязненных стоков, а только избирательно их дополняет, что в первую очередь связано с синергетическими эффектами, возникающими в процессах водоочистки.

Об авторах

Р.М. Муллакаев
Российский государственный университет нефти и газа (НИУ) имени И.М. Губкина
Россия
аспирант


М.С. Муллакаев
Институт общей и неорганической химии им. Н.С. Курнакова
Россия
д-р техн. наук, ст. науч. сотрудник


Список литературы

1. Ayhan Demirbaş, Hisham S. Bamufleh, Gaber Edris, Walid Alalayah. Treatment of contaminated wastewater. Petroleum Science and Technology. 2017. Vol. 35. No 9. P. 883—889.

2. Raed A. Al-Juboori, Leslie A. Bowtell. Ultrasound technology integration into drinking water treatment train. In book: Sonochemical Reactions. Edited by Selcan Karakus, IntechOpen. 2019. DOI: 10.5772/intechopen.88124.

3. Rocha I.C.C., Marques J.J., Silva A.S. Effects of ultrasound on the performance improvement of wastewater microfiltration through a porous ceramic filter. Braz. J. Chem. Eng. 2009. Vol. 26. No 4. P. 641—648.

4. Wai Lam Loh, Thiam Teik Wan, Vivek Kolladikkal Premanadhan, Ko Ko Naing, Nguyen Dinh Tam, Valente Hernandez Perez, Yu Qiao, Zhao, Zheng Wang. The Use of ultrasound for in-situ controlling of the membrane fouling. J. Membrane Science Technology. 2015. Vol. 5. Iss. 1. P. 1—6.

5. Doosti M.R., Kargar R., Sayadi M.H. Water treatment using ultrasonic assistance: A review. Proceedings of the international academy of ecology and environmental sciences. 2012. Vol. 2. No 2. P. 96—110.

6. Abdelrasoul A, Doan H. Ultrasound for membrane fouling control in wastewater treatment and protein purification downstream processing applications. In book: Advances in Membrane Technologies. 2020. DOI:10.5772/intechopen.89524.

7. Kentish Sandra, Ashokkumar Muthupandian. Ultrasonic membrane processing. In book: Ultrasound technologies for food and bioprocessing. 2010. DOI: 10.1007/978-1-4419-7472-3_23

8. Ming Cai, Shuna Zhao, Hanhua Liang. Mechanisms for the enhancement of ultrafiltration and membrane cleaning by different ultrasonic frequencies. Desalination. 2010. Vol. 263. P. 133—138.

9. Li Shu, Weihong Xing, Nanping XU. Effect of ultrasound on the treatment of emulsification wastewater by ceramic membranes. Chinese Journal of Chemical Engineering. 2007. Vol.15. Iss. 6. P. 855—860.

10. Kallioinen M., Mänttäri Mika. Influence of ultrasonic treatment on various membrane materials: A Review. Separation Science and Technology. 2011. Vol. 46. Iss. 9. P. 1388—1395.

11. Matei Nicoleta, Scarpete Dan. The use of ultrasound in the treatment process of wastewater. A review. The Annals of "Dunarea de Jos" University of Galati Fascicle IX. Metallurgy and Materials Science. 2015. № 2. P. 45—50.

12. Bakhtiari T., Berberashvili P., Kervalishvili. Water treatment improvement by ultrasonic approach. American Journal of Condensed Matter Physics. 2017. Vol. 7. № 4. P. 81—86.

13. Муллакаев М.С. Ультразвуковая интенсификация процессов добычи и переработки нефти, очистки нефтезагрязненных вод и переработки нефтешламов. М., НИИ ИЭП, 2019. 412 с.

14. Keremetin P.P., Parilov P.S., Mullakaev M.S., Vexler G.B., Kruchinina N.E., Abramov V.O. Definition of regeme and technological parameters of sonochemistry clearing of the petropolluted waters. Theoretical Foundations of Chemical Engineering. 2011. Vol. 45. Iss. 4. P. 931—937.

15. Vronskaya N., Malovany M., Koval I., Starchevsky V. Integrated adsorption and ultrasonic technology for water treatment processes. Ecological Problems. 2016. Vol. 1. № 1. P. 65—68.

16. Милушкин В.М., Ильин А.П. Сорбционные процессы извлечения примесей тяжелых металлов из воды при действии ультразвука в кипящем слое доломита. Сорбционные и хроматографические процессы. 2009. Т. 9. Вып. 2. С. 308—314.

17. Younggyu Son. Advanced oxidation processes using ultrasound technology for water and wastewater treatment. Handbook of Ultrasonics and Sonochemistry. 2016. P. 711—732.

18. Nilsun H. Ince. Ultrasound-assisted advanced oxidation processes for water decontamination. Ultrasonics Sonochemistry. 2018. Vol. 40. Part B. P. 97—103.

19. Papoutsakis Stefanos. Enhancing the photo-Fenton treatment of contaminated water by use of ultrasound and ironcomplexing. Doctoral thesis in chemistry and chemical engineering. Ecole polytechnique federale de Lausanne. 2015. 122 p.

20. Changxiu Gong, Jianguo Jiang, De’an Li, Sicong Tian. Ultrasonic application to boost hydroxyl radical formation during Fenton oxidation and release organic matter from sludge. Scientific reports. 2015. Vol. 5. P. 1—8.

21. Fei Rong, Jia Liu, Yejing Qiu, Wei Wu. Study on the treatment of PTA productive wastewater using ultrasound enhanced ozonation. Third International Conference on Measuring Technology and Mechatronics Automation. 6-7 Jan. 2011. P. 586—588.

22. Nashwa A. H. Fetyan, Tamer Mohamed Salem Attia. Water purification using ultrasound waves: application and challenges. Arab. J. Basic Appl. Sci. 2020. Vol. 27. Iss. 1. P. 194—207.

23. Paniwnyk L., Lapparisudthi O., Mason T.J. Degradation of water pollutants using ultrasound. Proceedings of 20-th International Congress on Acoustic. 2010. Sydney, Australia. P. 578—581.

24. To Thi Hai Yen, Dao Hai Yen, Nguen The Dong, Yasuaki Maeda. Sonochemical degradation of carbon tetrachloride in water solution at two frequencies: 200 kHz and 600 kHz, acoustic power of 200 W. Annual report of 2007 fiscal year. 2008. P. 378—383

25. Christian Pétrier, Anne Francony. Ultrasonic waste-water treatment: incidence of ultrasonic frequency on the rate of phenol and carbon tetrachloride degradation. Ultrasonics Sonochemistry. 1997. Vol. 4. Iss. 4. P. 295—300.

26. Feng Ruo, Zhao Yiyun, Zhu Changping, Mason T.J. Enhancement of ultrasonic cavitation yield by multi-frequency sonication. Ultrasonics Sonochemistry. 2002. Vol. 9. Iss. 5. P. 231—236.

27. Cum G., Galli G., .Gallo R, Spadaro A. Role of frequency in the ultrasonic activation of chemical reactions. Ultrasonics. 1992. Vol. 30. Iss. 4. P. 267—270.

28. Sarjerao Doltade, Gaurav Dastane, Nilesh Jadhav, Dipak Pinjari, Aniruddha Pandit. Hydrodynamic cavitation as an imperative technology for the treatment of petroleum refinery effluent. Journal of Water Process Engineering. 2019. Vol. 29. P. 100768.

29. Harald Franzen. Cleaning water with ultrasound. Scientific American. 2001. [Электронный ресурс] URL: https://www.scientificamerican.com/article/ cleaning-water-with-ultra (дата обращения 19.10.2020 г.)

30. Naresh N. Mahamuni, Yusuf G. Adewuyi. Advanced oxidation processes (AOPs) involving ultrasound for wastewater treatment: A review with emphasis on cost estimation. Ultrasonics Sonochemistry. 2010. Vol. 17. P. 990—1003.

31. Goncharuk V.V., Malyarenko V.V., Yaremenko V.A. Use of ultrasound in water treatment. Journal of Water Chemistry and Technology. 2008. Vol. 30. Iss. 3. P. 137—150.

32. Kumar R., Yadav N., Rawat L., Goyal M.K. Effect of Two Waves of Ultrasonic on Wastewater Treatment. J Chem. Eng. Process Technol. 2014. Vol. 5. № 3.

33. John H Gibson, Darrell Hai Nien Yong, Ramin R. Farnood,Peter Seto. A literature review of ultrasound technology and its application in wastewater disinfection. Water Quality Research Journal. 2008. Vol. 43. No 1. P. 23—35.

34. Naddeo V., Cesaro A., Mantzavinos D., Fatta-Kassinos D., Belgiorno V. Water and wastewater disinfecton by ultrasound irradiation – a critical review. Global NEST Journal. 2014. Vol 16. № 3. P. 561—577.

35. Phull S.S., Newman A.P., Lorimer J.P., Pollet B., Mason T.J. The development and evaluation of ultrasound in the biocidal treatment of water. Ultrason Sonochem. 1997. Vol. 4. Iss. 2. P.157—164.

36. Joyce Eadaoin M., Mason Timothy J. Ultrasound for the disinfection of water using flow systems. Conference: GPE-EPIC. At: Venice, Italy. 2009.

37. Ohrdes H.I., Twiefel J., Wallaschek J., Nogueira R., Rosenwinkel K.H. A control system for ultrasound devices utilized for inactivating E. coli in wastewater. Ultrasonic Sonochemistry. 2018. Vol.40. Pt. B. P. 158—162.

38. Upadhyay K., Khandate G. Ultrasound assisted oxidation process for the removal of aromatic contamination from effluents: A review. Universal Journal of Environmental Research and Technology. 2012. Vol. 2. Iss. 6. P. 458—464.

39. Qian-Qian Zhang, Ren-Cun Jin. The application of low-intensity ultrasound irradiation in biological wastewater treatment: A review. Critical Reviews in Environmental Science and Technology. 2015. Vol. 45. P. 2728—2761.

40. Wünsch B., Heine W., Neis U. Combatting bulking sludge with ultrasound. TU Hamburg Reports on Sanitary Engineering. 2002. Vol. 35. P. 201—212.

41. Dewil Raf, Baeyens Jan, Goutvrind Rebecca. Ultrasonic treatment of waste activated sludge. Environmental Progress. 2006. Vol. 25. P. 121—128.

42. Lippert T., Bandelin J., Musch A., Drewes J.E., Koch K. Energypositive sewage sludge pre-treatment with a novel ultrasonic flatbed reactor at low energy input. Bioresource Technology. 2018. Vol. 264. P. 298—305.

43. Niels de Beus. Thesis project systems and control, ultrasound bioreactor design and testing. 2013. http://edepot.wur.nl/24861134. 37

44. LizamaaA.C., Figueirasa C.C., Gaviriab L.A., Pedregueraa A.Z.,Espinozaa J.E.R. Nanoferrosonication: A novel strategy for intensifying the methanogenic process in sewage sludge. Bioresource Technology. 2019. Vol. 276. P. 318—324.


Для цитирования:


Муллакаев Р., Муллакаев М. Ультразвук в процессах очистки нефтезагрязненных стоков: обзор. Экология и промышленность России. 2021;25(3):53-59. https://doi.org/10.18412/1816-0395-2021-3-53-59

For citation:


Mullakaev R., Mullakaev M. Ultrasound in the Processes of Treatment of Oil-Contamined Waste: Overview. Ecology and Industry of Russia. 2021;25(3):53-59. (In Russ.) https://doi.org/10.18412/1816-0395-2021-3-53-59

Просмотров: 70


ISSN 1816-0395 (Print)
ISSN 2413-6042 (Online)