Preview

Ecology and Industry of Russia

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Effect of Alumosilicate Adsorbent Regeneration Conditions on the Dehydration of Methanol Extracted from Natural Gas

https://doi.org/10.18412/1816-0395-2020-8-17-21

Abstract

This paper focuses on the parameters of the technological regime for the regeneration of aluminosilicate adsorbents on natural gas processing plants adsorption type on the dehydration of methanol from natural gas. The object of this study were the non-hydrocarbon fraction of liquid products of the purification of natural gas from an adsorption unit on silica gel with countercurrent regeneration. Gas treatment plants was optimized using BASF KC-Trockenperlen silica gels and microporous silica gel adsorbents (АСМ). The direct-flow regeneration technology on natural gas processing plants with adsorption purification оn aluminosilicate adsorbents contributes to a more efficient reaction of the conversion of methanol to dimethyl ether and his process reduces the volume of non-hydrocarbon waste fraction. Decreasing methanol concentrations reduces atmospheric emissions and saves fuel gas consumed by a stationary thermal treatment unit.

About the Authors

Z.А. Temerdashev
Kuban State University
Russian Federation
Dr. Sci. (Chem.), Head Department


A.V. Rudenko
Krasnodar LPMGP branch of Gazprom Transgaz Krasnodar
Russian Federation
Deputy Head


I.A. Kolychev
Krasnodar LPMGP branch of Gazprom Transgaz Krasnodar
Russian Federation
Cand. Sci. (Chem.), Head of the Chemical Analytical Laboratory


A.S. Kostina
Kuban State University
Russian Federation
Undergraduate


References

1. Темердашев З.А., Руденко А.В., Колычев И.А., Костина А.С. Утилизация метанола из природного газа на силикагелевом адсорбенте, модифицированном оксидом алюминия. Экология и промышленность России. 2019. Т. 23. № 11. С. 4—9.

2. Катаев К.А. Гидратообразование в трубопроводах природного газа. Всероссийский журнал научных публикаций. 2011. № 1. Т. 2. С. 22—23.

3. Khaleel A. Methanol dehydration to dimethyl ether over highly porous xerogel alumina catalyst: Flow rate effect. Fuel Processing Technology. 2010. V. 91. № 11. P. 1505—1509.

4. Rashidi H., Hamoule T., Reza Khosravi Nikou M., Shariati A. DME synthesis over MSU-S catalyst through methanol dehydration reaction. Iranian Journal of Oil & Gas Science and Technology. 2013. V. 2. № 4. P. 67—73.

5. Catizzone E., Migliori M., Aloise A., Lamberti R., Giordano G. Hierarchical Low Si/Al Ratio Ferrierite Zeolite by Sequential Postsynthesis Treatment: Catalytic Assessment in Dehydration Reaction of Methanol. Journal of Chemistry. 2019. V. 2019. ID 3084356. 9 p.

6. Ortega C., Rezaei M., Hessel V., Kolb G. Methanol to dimethyl ether conversion over a ZSM-5 catalyst: Intrinsic kinetic study on an external recycle reactor. Chemical Engineering Journal. 2018. V. 347. P. 741—753.

7. Banu I., Ganea R., Vasilievici G., Anghel A., Gogulancea V., Isopencu G., Bozga G. An Evaluation of Published Kinetic Models for Vapor Phase Methanol Conversion to Dimethyl Ether over the H-ZSM-5 Catalyst. Energy & fuels. 2018. V. 32. № 8. P. 8689—8699.

8. Elamin M.M., Muraza O., Malaibari Z., Ba H., Nhut J.M., Pham-Huu C. Microwave assisted growth of SAPO-34 on β-SiC foams for methanol dehydration to dimethyl ether. Chemical Engineering Journal. 2015. V. 274. P. 113—122.

9. Sang Y., Liu H., He S., Li H., Jiao Q., Wu Q., Sun K. Catalytic performance of hierarchical H-ZSM-5/MCM-41 for methanol dehydration to dimethyl ether. Journal of Energy Chemistry. 2013. V. 22. № 5. P. 769—777.

10. Aboul-Fotouh S.M. Effect of ultrasonic irradiation and/or halogenation on the catalytic performance of γ-Al2O3 for methanol dehydration to dimethyl ether. Journal of Fuel Chemistry and Technology. 2013. V. 41. № 9. P. 1077—1084.

11. Zhou J., Wang Y., Zou W., Wang C., Li L., Liu Z., Xie Z. Mass transfer advantage of hierarchical zeolites promotes methanol converting into para-methyl group in toluene methylation. Industrial & Engineering Chemistry Research. 2017. V. 56. № 33. Р. 9310—9321.

12. Xie J., Zhuang W., Yan N., Du Y., Xi S., Zhang W., Wang J. Directly synthesized V-containing BEA zeolite: Acidoxidation bifunctional catalyst enhancing C-alkylation selectivity in liquid-phase methylation of phenol. Chemical Engineering Journal. 2017. № 328. Р. 1031—1042.

13. Erichsen M.W., De Wispelaere K., Hemelsoet K., Moors S.L., Deconinck T., Waroquier M., Olsbye U. How zeolitic acid strength and composition alter the reactivity of alkenes and aromatics towards methanol. Journal of Catalysis. 2015. № 328. Р. 186—196.

14. Sad M.E., Padrу C.L., Apesteguía C.R. Study of the phenol methylation mechanism on zeolites HBEA, HZSM5 and HMCM22. Journal of Molecular Catalysis A: Chemical. 2010. V. 327. № 1. Р. 63—72.

15. Ahn J.H., Kolvenbach R., Gutiérrez O.Y., Al-Khattaf S.S., Jentys A., Lercher J.A. Tailoring p-xylene selectivity in toluene methylation on medium pore-size zeolites. Microporous and Mesoporous Materials. 2015. V. 210. Р. 52—59.


Review

For citations:


Temerdashev Z., Rudenko A., Kolychev I., Kostina A. Effect of Alumosilicate Adsorbent Regeneration Conditions on the Dehydration of Methanol Extracted from Natural Gas. Ecology and Industry of Russia. 2020;24(8):17-21. (In Russ.) https://doi.org/10.18412/1816-0395-2020-8-17-21

Views: 616


ISSN 1816-0395 (Print)
ISSN 2413-6042 (Online)