

Sorption of Non-Ferrous Metals on Amorphous Titanium Phosphate
https://doi.org/10.18412/1816-0395-2020-4-30-35
Abstract
The results of research of the sorption behavior of non-ferrous metal ions (Zn2+, Co2+, Cd2+ и Pb2+ ions ) on amorphous titanium phosphate, with TiO(OH)(H2PO4)2·H2O chemical composition are presented. According to the adsorption isotherms the maximum sorption capacity was found to be (mg/g): Co2+ –66.1; Zn2+ –73.5; Cd2+ –179.1; Pb2+ –403.6. Mesoporous structure of the sorbent provides the high sorption kinetics and uptake of studied ions occurs up to 15 min. The presents of strongly acid functional groups in the sorbent matrix governs its successful operation under acid conditions. Simulated and real sewage multicomponent solution were tested and shown that titanium phosphate is a promising material for toxic metal removal. The chemical composition of purified water meets the requirements of the MPC for natural water.
About the Authors
M.V. MaslovaRussian Federation
Dr. Sci. (Eng.), Chief Research Fellow
L.G. Gerasimova
Russian Federation
Dr. Sci. (Eng.), Chief Research Fellow
References
1. Barrios-Estrada C., Rostro-Alanis M., Muñoz-Gutiérrez B.D., Iqbal H.M.N., Kannan S., Parra-Saldívar R. Emergent contaminants: Endocrine disruptors and their laccase-assisted degradation. A review. Science Total Environmental. 2018. V. 612. P. 1516—1531.
2. Dixit R., Malaviya D., Pandiyan K., Singh U.B., Sahu A., Shukla R., Singh B.P., Rai J.P., Sharma P.K., Lade H. Bioremediation of heavy metals from soil and aquatic environment: An overview of principles and criteria of fundamental processes. Sustainability. 2015. № 7. Р. 2189—2212.
3. Oyaro N., Juddy O., Murago E.N.M., Gitonga E. The contents of Pb, Cu, Zn and Cd in meat in Nairobi, Kenya. J. Food, Agric. Environ. 2007. N 5. P. 119—121.
4. Bazrafshan E., Mohammadi L., Ansari-Moghaddam A., Marvi A.H. Heavy metals removal from aqueous environments by electrocoagulation. Journal of .Environmental Heath Science and Engineering. 2015. V. 13. P. 1—16.
5. Sancey B., Charles J., Trunfio G., Badot P.-M., Jacquot M., Hutinet X., Gavoille S., Crini G. Effects of additional sorption treatment of industrial water discharge by cross-linked starch. Indust. Eng. Chem. Res. 2011. V.50. P. 1749—1756.
6. Hunsom M., Pluksathom K., Damronglered S., Vergnes H., Duverneuil P. Electrochemical treatment of heavy metals from industrial effluent and modeling of copper reduction. Water Research. 2005. V. 39. P. 610—616.
7. Shen C., Zhao Y., Li W., Yang Y., Liu R., Morgen D. Global profile of heavy metals and sedimentals adsorption using drinking water treatment residual: a review, Chem.Eng. J. 2019. V. 372. P. 1019—1027.
8. Герасимова Л.Г., Маслова М.В., Николаев А.И., Охрименко Р.Ф. Способ переработки сфенового концентрата. Пат. РФ 2323881. Заявл. 29.06.2006. Опубл.10.05.2008. БИ № 13.
9. Maslova M.V., Ivanenko V.I., Gerasimova L.G., Rizuk N.L. Effect of Synthesis Method on the Phase Composition and Ion-Exchange Properties of Titanium Phosphate. Russian Journal of Inorganic Chemistry. 2018. V. 63(9). P. 1141—1148.
10. Маслова М.В., Герасимова Л.Г., Щукина Е.С., Рыжук Н.В. Способ получения фосфата титана. Пат. РФ 2647304. Заявл. 03.05.2017. Опубл. 15.03.2018. БИ № 8.
11. Bedin K.C., Martins A.C., Cazetta A.L., Pezoti O., Almeida V.C. KOH-activated carbon prepared from sucrose spherical carbon: Adsorption equilibrium, kinetic and thermodynamic studies for Methylene Blue removal. Chemical Engineering Journal. 2016. V. 286. P. 476—484.
12. Rosa S., Airoldi C. Thermodynamic dare of ion exchange on amorphous titanium (IV) phosphate. Thermochemica Acta. 1996. V. 284. P. 289—297.
Review
For citations:
Maslova M., Gerasimova L. Sorption of Non-Ferrous Metals on Amorphous Titanium Phosphate. Ecology and Industry of Russia. 2020;24(4):30-35. (In Russ.) https://doi.org/10.18412/1816-0395-2020-4-30-35