

Wastewater Treatment from Aluminum Ions by Technogenic Carbonatecontaining Reagent
https://doi.org/10.18412/1816-0395-2018-1-50-55
Abstract
The possibility of using the technogenic waste of thermal power plants as a solid phase reagent for effective purification of aqueous solutions from aluminum ions under stationary conditions is shown. Al3+ model solutions with concentration from 100 to 1000 mg·l-1 are used to determine the features of the heterophase process and study the effect of the amount of reagent used, the contact time, temperature and concentration of the initial solutions on the degree of purification of solutions from Al3+. It is found that when choosing the conditions, the proposed reagent allows the aluminum ions to be converted to a solid phase to obtain solutions containing aluminum below the maximum permissible concentrations. Reagent consumption decreases with increasing process time, increasing temperature and decreasing the concentration of the solution to be cleaned. A method for wastewater treatment using a new reagent from aluminum ions to the MPC level was developed and successfully applied at the metal working enterprise. The precipitate obtained in the purification can be of interest as an aluminum concentrate. The economic and environmental benefits of using a new reagent for purification are compared with the use of traditional sorbents. The proposed purification method provides a comprehensive solution of important environmental problems: purification of water from cation-pollutants with simultaneous utilization of anthropogenic waste from thermal power plants.
About the Authors
E.M. BayanRussian Federation
Cand. Sci. (Eng.), Associate Professor
T.G. Lupeyko
Russian Federation
Dr. Sci. (Chem.), Head of Department
M.O. Gorbunova
Russian Federation
Cand. Sci. (Chem.), Associate Professor
E.V. Tolstobrova
Russian Federation
Student
References
1. Gupta V.K., Carrott P. J. M., Ribeiro Carrott M. M. L. et al. Low cost adsorbents:growing approach to wastewater treatment. A review. Critical Reviews in Environmental Science and Technology. 2009. V. 39. № 10.Р. 783—842.
2. Carmen Zaharia. Application of waste materials as 'low cost' sorbents for industrial effluent treatment: a comparative overview. International Journal of Materials and Product Technology. 2015. V. 50. № 3—4. Р. 196—220.
3. Zhizhaev A.M., Merkulova E.N. Interaction of copper( II) and zinc(II) in coprecipitation from sulfate solutions with natural calcium carbonate. Russian Journal of Applied Chemistry. 2014. V. 87. № 1. P. 16—22.
4. Zhizhaev A.M., Merkulova E.N. Interaction of sulfate solutions of zinc with natural calcium carbonates. Russian Journal of Applied Chemistry. 2008. V. 81. № 6. P. 946—951.
5. Pomazkina O.I., Filatova E.G., Pozhidaev Y.N. Adsorption of copper(II) ions by calcium heulandites. Protection of Metals and Physical Chemistry of Surfaces. 2015. V. 51. № 4. P. 518—522.
6. Lupeiko T.G., Gorbunova M.O., Bayan E.M. Use of a carbonate-containing process waste in purification of aqueous solutions to remove zinc(II) ions. Russian Journal of Applied Chemistry. 2005. V. 78. № 9. P. 1457—1461.
7. Bayan E.M., Lupeiko T.G., Gorbunova M.O. Interaction of a carbonate-containing reagent with heavy metal ions in aqueous solutions. Russian Journal of Applied Chemistry. 2007. V. 80. № 7. P. 1032—1035.
8. Bayan E.M., Lupeiko T.G., Gorbunova M.O., Tolstobrova E.V. Treatment of aqueous solutions with a technogenic carbonate-containing reagent to remove lead(II) ions. Russian Journal of Applied Chemistry. 2015. V. 88. № 10. P. 1728—1732.
9. Lupeiko T.G., Gorbunova M.O., Bayan E.M. Deep purification of aqueous solutions to remove iron(III) with carbonate-containing industrial waste. Russian Journal of Applied Chemistry. 2004. V. 77. № 1. P. 79—82.
10. Lupeiko T.G., Gorbunova M.O., Bayan E.M. Use of carbonate-containing industrial waste for treatment of aqueous solutions to remove nickel(II) ions. Russian Journal of Applied Chemistry. 2004. V. 77. № 1. P. 83—87.
11. Kinraide T.B. Identity of the rhizotoxic aluminium species. Plant and Soil. 1991. V. 134. № 1. Р. 167—178.
12. de Almeida N.M., de Almeida A.-A.F., Mangabeira P.A.O., Ahnert D., Reis G.S.M., de Castro A.V. Molecular, biochemical, morphological and ultrastructural responses of cacao seedlings to aluminum (Al3+) toxicity. Acta Physiologiae Plantarum. 2015. V. 37. № 2. Р. 1—17.
13. Шугалей И.В., Гарабаджиу А.В., Илюшин М.А., Судариков А.М. Некоторые аспекты влияния алюминия и его соединений на живые организмы. Экологическая химия. 2012. Т. 21. № 3. С. 172—186.
14. СанПиН 2.1.4.1074-01. "Питьевая вода и водоснабжение населенных мест. Питьевая вода. Гигиенические требования к качеству воды централизованных си-стем питьевого водоснабжения. Контроль качества". Электронный ресурс. URL: http://files.stroyinf.ru/Index2/1/4293837/4293837319.htm (дата обращения 12.12.2017 г.)
15. Горбунова М.О., Баян Е.М., Поповян И.Э., Толстоброва Е.В. Пробоподготовка и условия определения алюминия фотометрическими методами в водных объектах. Вода: химия и экология. 2015. № 5. С. 47—52.
16. Руководящий документ РД 52.24.358. Массовая концентрация железа общего в водах. Методика выполнения измерений фотометрическим методом с 1,10-фенантролином. Утв. Росгидрометом 27.03.2006. Электронный ресурс. URL: http://files.stroyinf.ru/Data2/1/4293837/4293837319.htm (дата обращения 12.12.2017 г.)
17. Лурье Ю.Ю. Справочник по аналитической химии. М., Химия, 1989. 448 с.
Review
For citations:
Bayan E., Lupeyko T., Gorbunova M., Tolstobrova E. Wastewater Treatment from Aluminum Ions by Technogenic Carbonatecontaining Reagent. Ecology and Industry of Russia. 2018;22(1):50-55. (In Russ.) https://doi.org/10.18412/1816-0395-2018-1-50-55