The effect of Modification of Fischer-Tropsch Catalysts on the Synthesis of Higher C2+ Alcohols, Valuable Raw Materials for Sustainable Aviation Fuels
https://doi.org/10.18412/1816-0395-2025-12-32-39
Abstract
Data on the activity of Fe-containing Fischer-Tropsch catalysts doped with Cu, Co, and K deposited on attapulgite, as well as with different Cu:Fe ratios (3:17, 12:8 or 17:3), have been established in the synthesis of C2+ alcohols from synthesis gas (H2:CO=1; 2) to produce sustainable aviation fuel (225–300 °C, 30 bar). It was found that the joint introduction of Cu, Fe, Co and K provides a higher yield of C2+ alcohols, the selectivity of which increases with increasing proportion of Fe and temperature (H2:CO=1), reaching 90% over 3Cu17FeCoK/attapulgite at CO < 10% conversions. It is noted that the higher activity of 3Cu17FeCoK along the route of synthesis of C2+ alcohols is apparently associated with a higher content of highly dispersed phases of Fe0; Fe3O4 (XRD) and a uniform distribution of metals on the surface (TEM), providing effective interphase contact.
Keywords
About the Author
I. L. SimakovaRussian Federation
Cand. Sci. (Chem.), Leading Research Fellow
References
1. Митрова T., Хохлов A., Мельников Ю., Пердеро A., Мельникова M., Залюбовский Е. Глобальная климатическая угроза и экономика России: в поисках особого пути. 2020 https://sk.skolkovo.ru/storage/file_storage/74285006-e26c-4aec-9c1dc38bb44891a7/SKOLKOVO_EneC_Climate_Primer_RU.pdf (доступно 01.10.2025).
2. Попова И.М., Колмар О.И. Низкоуглеродное развитие России: вызовы и возможности в новых условиях. Вестник международных организаций. 2023. Т. 18. № 4. С. 1—30.
3. https://afdc.energy.gov/fuels/sustainable-aviation-fuel.
4. https://www.icao.int/environmental-protection/Documents/CorsiaBrochure_8Panels-RUS-Web.pdf.
5. https://rspp.ru/events/news/v-komitete-rspp-sostoyalos-zasedanierabochey-gruppy-po-voprosam-realizatsii-klimaticheskikh-proektov-iuglerodnomu-tsenoobrazovaniyu-684696b54058f/.
6. https://www.rbc.ru/business/16/09/2025/68c84ae09a7947a27c9034de.
7. Bioenergy Technologies Office. Sustainable Aviation Fuel: Review of Technical Pathways. Report by Holladay J., Abdullah Z., Heyne J. beto-sust-aviation-fuel-sep-2020.pdf.
8. Díaz-Pérez M.A., Serrano-Ruiz J.C. Catalytic Production of Jet Fuels from Biomass. Molecules. 2020. 25. 802. doi:10.3390/molecules25040802.
9. Mawhood R., Gazis E., de Jong S., Hoefnagels R., Slade R. Production pathways for renewable jet fuel: A review of commercialization status and future prospects. Biofuels Bioprod. Biorefining. 2016. 10. 462—484.
10. https://www.gazprom-neft.ru/press-center/news/zelenaya-aviatsiya-uchenye-gazprom-nefti-razrabotali-tekhnologiyu-proizvodstva-ekologichnogo-aviatsi/.
11. Li Z., Zeng Z., Yao D., Fan S., Guo S., Lv J., Huang S., Wang Y., Ma X. High-performance CoCu catalyst encapsulated in KIT-6 for higher alcohol synthesis from syngas. ACS Sust. Chem. Eng. 2020. V. 8. P. 200—209.
12. Зубков И.Н., Папета О.П., Боженко Е.А., Демченко С.С., Драченко А.С., Лавренов С.А., Яковенко Р.Е. Синтез высших спиртов из СО и Н2 на би- и полиметаллических катализаторах. Известия вузов. Сев.-Кавк. регион. Технические науки. 2022. № 1. Стр. 43—53.
13. Liu G., Yang G., Peng X., Wu J., Tsubaki N. Recent advances in the routes and catalysts for ethanol synthesis from syngas. Chem. Soc. Rev. 2022. V. 51. P. 5606—5659.
14. Mäki-Arvela P., Aho A., Simakova I., Murzin D.Yu. Sustainable aviation fuel from syngas through higher alcohols. ChemCatChem. 2022. V. 14. e202201005 (1 of 21). doi.org/10.1002/cctc.202201005.
15. Zeng F., Xi X., Cao H., Pei Y., Heeres H.J., Palkovits R. Synthesis of mixed alcohols with enhanced C3+ alcohol production by CO hydrogenation over potassium promoted molybdenum sulfide. Applied Catalysis B: Environmental. 2019. V. 246. P. 232—241.
16. Luk H.T., Mondelli C., Ferré D.C., Stewart J.A., Pérez-Ramírez J. Status and prospects in higher alcohols synthesis from syngas. Chem. Soc. Rev. 2017. V. 46. №. 5. P. 1358—1426.
17. Yoo E., Lee U., Wang M. Life-cycle greenhouse gas emissions of sustainable aviation fuel through a net-zero carbon biofuel plant design. ACS Sustainable Chem. Eng. 2022. V. 10. N. 27. P. 8725—8732.
18. Liu B., Li Y., Duan Y., Ding T., Tang Y., Zheng C. Effect of supports on performance of Cu—Fe based catalysts for higher alcohols synthesis from syngas. React. Kinet. Mech. Cat. 2019. V. 128. P. 695—706.
19. Lu Y., Yu F., Hu J., Liu J. Catalytic conversion of syngas to mixed alcohols over Zn-Mn promoted Cu-Fe based catalyst. Applied Catalysis A: General. 2012. V. 429—430. P. 48—58.
20. Guo H., Zhang H., Peng F., Yang H., Xiong L., Wang C., Huang C., Chen X., Ma L. Effects of Cu/Fe ratio on structure and performance of attapulgite supported CuFeCo-based catalyst for mixed alcohols synthesis from syngas. Applied Catalysis A: General. 2015 V. 503. P. 51—61.
21. Yang W., Chen M., Zhou J., Duan Y., An Y., Liu M., Tian M. Preparation and evaluation of highly dispersed HHSS supported Cu-Fe bimetallic catalysts for higher alcohols synthesis from syngas. Applied Catalysis A: General. 2020. P. 117868.
22. Aho A., Lind N., Virtanen P., Mдki-Arvela P., Erдnen K., Granroth S., Korpelin V., Honkala K., Russo V., Simakova I., Murzin D.Y. Influence of Cu:Fe Ratio in Synthesis of Higher Alcohols from Syngas over CuFeCoK/Attapulgite Catalysts. Applied Catalysis O: Open. 2024. V.193. 206972:1-18. DOI: 10.1016/j.apcato.2024.206972.
23. Mäki-Arvela P., Martin G., Simakova I., Tokarev A., Wärnå J., Hemming J., Holmbom B., Salmi T., Murzin D.Yu. Kinetics, catalyst deactivation and modeling in the hydrogenation of β-sitosterol to β-sitostanol over microporous and mesoporous carbon supported Pd catalysts. Chemical Engineering Journal. 2009. V. 154 (1—3). P. 45—51.
24. He M., Luo M., Fang P. Characterization of CuO species and thermal solid-solid interaction in CuO/CeO2-Al2O3 Catalyst by in-situ XRD, Raman spectroscopy and TPR. Journal of Rare Earths. 2006. V. 24. P. 188—192.
25. Zhang J., Zeng F., Fan X., Chen H. Review on the Pivotal Role of Interfacial Sites in Multicomponent Catalysts for Promoting Selective COx Hydrogenation to Ethanol. ChemCatChem. 2025. V. 17. e01092 (1 of 14). doi.org/10.1002/cctc.202501092.
26. Gong N., Wu Y., Ma Q., Tan. Y. A simple strategy stabilizing for a CuFe/SiO2 catalyst and boosting higher alcohols’ synthesis from syngas. Catalysts. 2023. V. 13. P. 237—249.
Review
For citations:
Simakova I.L. The effect of Modification of Fischer-Tropsch Catalysts on the Synthesis of Higher C2+ Alcohols, Valuable Raw Materials for Sustainable Aviation Fuels. Ecology and Industry of Russia. 2025;29(12):32-39. (In Russ.) https://doi.org/10.18412/1816-0395-2025-12-32-39



























