Fiberglass Catalysts for Controlled Conditioning of Flue Gases from Coal-fired Thermal Power Plants with Sulfur Trioxide
https://doi.org/10.18412/1816-0395-2025-12-
Abstract
To increase the efficiency of ash and dust removal in electrostatic precipitators, it is proposed to introduce microquantities of conditioning agents into the flue gas stream that improve the electrophysical properties of coal ash, such as sulfur trioxide. Structured catalytic systems for the oxidation of SO2 present in flue gases were studied, based on platinum fiberglass catalysts that can be positioned directly in the flue duct, partially blocking its cross-section in the high-temperature zone (~450 °C). A modification of the catalyst layer configuration and its hydraulic resistance is recommended, which allows control of the gas volume passing through the catalytic block and, consequently, regulation of the SO3 concentration in the flue gases before the electrostatic precipitator. It is concluded that this approach can significantly enhance the environmental efficiency of coal-fired thermal power plants without costly reconstruction of electrostatic precipitators, installation of a separate catalytic reactor or the use of an external sulfur source.
Keywords
About the Authors
K. E. GolyashovaRussian Federation
Engineer
S. V. Zazhigalov
Russian Federation
Cand. Sci. (Eng.), Research Scientist
A. N. Zagoruyko
Russian Federation
Dr. Sci. (Eng.), Leading Research Fellow
References
1. Chen Y. et al. A comprehensive review of toxicity of coal fly ash and its leachate in the ecosystem. Ecotoxicology and Environmental Safety. 2024. V. 269.115905.
2. Shanthakumar S., Singh D.N., Phadke R.C. Flue gas conditioning for reducing suspended particulate matter from thermal power stations. Progress in Energy and Combustion Science. 2008. V. 34(6). Р. 685—695.
3. Guo B., Yang D., Su Y., Yu A. Process modeling of low temperature electrostatic precipitators. Powder Technology. 2017. V. 314. Р. 567—576.
4. X. Wu et al. Measurement techniques for sulfur trioxide concentration in coal-fired flue gas: a review. Environmental Science and Pollution Research. V. 28. 2021. P. 22278—22295.
5. Krigmont H.V., Ferrigan J.J. Dual flue gas conditioning processes, technology and experience. XVth International Conference on Electrostatic Precipitation. 2018. URL: https://d1wqtxts1xzle7.cloud-front.net/88234413/TPP-607---Dual-FGC---Process-Technnology-and-Experience-libre.pdf
6. Pat. US8449653B2. System and method for flue gas conditioning. Krigmont H. B01D53/8609. 2011.
7. US5547495A. Flue gas conditioning system. Robert A. Wright. C01B17/803. 1992.
8. Васильев Б.Т., Отвагина М.И. Технология серной кислоты. М., Химия, 1985. 384 с.
9. Загоруйко А.Н., Лопатин С.А. Структурированные каталитические системы на основе стекловолокнистых катализаторов. Новосибирск, издательство НГТУ, 2018. 204 с.
10. Golyashova K., Mikenin P., Elyshev A., Bobylev A., Matigorov A., Paukshtis E., Lopatin S., Zagoruiko A. Structured Catalytic Cartridges for SO2 Oxidation in Flue Gases of Coal-Fired Powerplants. Chemical Engineering Journal. 2019. V. 378. 122194.
11. Zagoruiko A., Balzhinimaev B., Vanag S., Goncharov V., Lopatin S., Zykov A., Anichkov S., Zhukov Yu., Yankilevich V., Proskokov N., Hutson N. Novel Catalytic Process for Flue Gas Conditioning in Electrostatic Precipitators of Coal-Fired Power Plants. Journal of the Air & Waste Management Association. 2010. V. 60. Р. 1002—1008.
12. Lopatin S., Elyshev A., Zagoruiko A. CFD Modelling of the Structured Cartridges with Glass-Fiber Catalysts. Chemical Engineering Research and Design. 2023. V. 190. Р. 255—267.
13. Голяшова К.Е., Загоруйко А.Н., Лопатин С.А. Способ химического кондиционирования дымовых газов. Патент РФ № 2825406. 2023.
Review
For citations:
Golyashova K.E., Zazhigalov S.V., Zagoruyko A.N. Fiberglass Catalysts for Controlled Conditioning of Flue Gases from Coal-fired Thermal Power Plants with Sulfur Trioxide. Ecology and Industry of Russia. 2025;29(12). (In Russ.) https://doi.org/10.18412/1816-0395-2025-12-



























