Preview

Ecology and Industry of Russia

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Life Cycle Functional Modeling of a Solid Oxide Fuel Cell Unit

https://doi.org/10.18412/1816-0395-2025-12-

Abstract

An experimental solid oxide fuel cell (SOFC) unit with a capacity of 2.5 kW produced in Russia was studied. It was determined that the carbon footprint of the SOFC unit manufacturing process amounts to 3628.2 kg CO2-eq., while the carbon footprint of the generated electricity (excluding fuel-related emissions) is 20.4 g CO2-eq./(kWh) with minimal equipment service life. It is noted that optimization of operating modes and extension of equipment lifetime ensure a carbon footprint of electricity (excluding fuel-related emissions) of 14.1 g CO2-eq./(kWh). It is concluded that the transition to serial production and optimization of SOFC unit operating conditions will make it possible to achieve an electricity production cost of 8 RUB/(kWh).

About the Authors

E. S. Shirinkina
Perm National Research Polytechnic University (PNRPU)
Russian Federation

Cand. Sci. (Eng.), Associate Professor



Yu. V. Mozzhegorova
Perm National Research Polytechnic University (PNRPU)
Russian Federation

Cand. Sci. (Eng.), Associate Professor



G. V. Ilyinykh
Perm National Research Polytechnic University (PNRPU)
Russian Federation

Cand. Sci. (Eng.), Associate Professor



V. N. Korotayev
Perm National Research Polytechnic University (PNRPU)
Russian Federation

Dr. Sci. (Eng.), Professor



References

1. Safaei A., Freire F., Henggeler Antunes C.A. Life cycle multi-objective economic and environmental assessment of distributed generation in buildings. Energy Conversion and Management. 2015. Vol.97. P. 420—427. DOI:10.1016/j.enconman.2015.03.048.

2. Lee Y.D., Ahn K.Y., Morosuk T., Tsatsaronis G. Environmental impact assessment of a solid-oxide fuel-cell-based combined-heat-and-power-generation system. Energy. 2015. Vol. 79. P. 455—466. DOI:10.1016/j.energy.2014.11.035.

3. Вялых И.А., Кондрашов Н.Н., Коротаев В.Н., Арасланов Р.Д., Галлямов А.Н., Долгих А.В., Власов С.А., Любимов А.В. Проектирование опытной энергетической установки на ТОТЭ мощностью 2,5 кВт. Тез. докл. "Школы-конференции Центра компетенций НТИ "Водород как основа низкоуглеродной экономики", 26—27 сентября, г. Киров 2024. С. 51—52. [Электронный ресурс]. URL: https://catalysis.ru/resources/institute/Publishing/Report/2024/H2_Abstracts-2024.pdf (дата обращения 18.06.2025).

4. Мозжегорова Ю.В., Ильиных Г.В., Коротаев В.Н. Углеродный след энергетической установки на основе твердооксидного топливного элемента. Глобальная энергия. 2025. Т. 31. № 2. С. 42—56. DOI 10.18721/JEST.31204.

5. Naeini M., Cotton J. S, Adams J.S. Dynamic life cycle assessment of solid oxide fuel cell system considering long-term degradation effects Energy Conversion and Management. 2022. Vol. 255 P. 115336. DOI:10.1016/j.enconman.2022.115336.

6. Схема и программа развития электроэнергетических систем России на 2024-2029 гг. [Электронный ресурс]. URL: https://www.so-ups.ru/fileadmin/files/com pany/future_plan/pub lic_discussion/2024/final/sipr_ups_2024-29_fin.pdf (дата обращения 18.06.2025).

7. Филин Ю.И. Перспективы использования топливных элементов в качестве резервных источников питания. Вестник Брянской ГСХА. 2024. № 5(105). С. 61—64.

8. Corigliano O., Lorenzo G. De, Fragiacomo P. Techno-energy-economic sensitivity analysis of hybrid system Solid Oxide Fuel Cell/Gas Turbine. AIMS Energy. No. 9(5). P. 934—990. DOI: 10.3934/energy.2021044.

9. Braun R.J. Techno-Economic Optimal Design of Solid Oxide Fuel Cell Systems for Micro-Combined Heat and Power Applications in the U.S. Journal of Fuel Cell Science and Technology. 2010. Vol. 7. P. 031018. DOI: 10.1115/1.3211099.

10. Агарков Д.А., Бредихин С.И. Твердооксидные топливные элементы (ТОТЭ) и энергоустановки на их основе. Энергоэксперт. 2021. № 3(79). С. 36—38

11. A Total Cost of Ownership Model for Solid Oxide Fuel Cells in Combined Heat and Power and Power- Only Applications. [Электронный ресурс]. URL: https://www.energy.gov/sites/prod/files/2016/06/f32/fcto_lbnl_total_cost_owner-ship_sofc_systems.pdf (дата обращения 17.06.2025).

12. Gandiglio M., De Sario F., Lanzini A., Bobba S., Santarelli M., Blengini G.A. Life Cycle Assessment of a Biogas-Fed Solid Oxide Fuel Cell (SOFC) Integrated in a Wastewater Treatment Plant. Energies. 2019. No.12(9). P. 1611. DOI:10.3390/en12091611.

13. Colantoni A., Giuseppina M., Buccarella M., Cividino S., Vello M. Economic Analysis of Solid Oxide Fuel Cell Systems Utilizing Natural Gas as Fuel. ICCSA. 2011. Part IV. LNCS. 6785. P. 270—276.

14. Yang Y., Shen Y., Sun T., Liu P., Lei T. Economic Analysis of Solid Oxide Fuel Cell Systems Utilizing Natural Gas as Fuel. Energies. 2024. No.17. P. 2694. DOI:10.3390/en17112694.

15. Xiao Y., You H., Chen D., Yuan Y., Hu B., Li G., Han J. Exergy, exergoeconomic, and exergoenvironmental analyses of a combined cooling, heating, power, and freshwater poly-generation system driven by methane-fueled solid oxide fuel cell. Energy. 2025. Vol. 314. P. 134295. DOI:10.1016/j.energy.2024.134295.


Review

For citations:


Shirinkina E.S., Mozzhegorova Yu.V., Ilyinykh G.V., Korotayev V.N. Life Cycle Functional Modeling of a Solid Oxide Fuel Cell Unit. Ecology and Industry of Russia. 2025;29(12). (In Russ.) https://doi.org/10.18412/1816-0395-2025-12-

Views: 26


ISSN 1816-0395 (Print)
ISSN 2413-6042 (Online)