Зола уноса в бетоне: механизмы взаимодействия и продукты реакций. Часть 1. Кислые золы
https://doi.org/10.18412/1816-0395-2025-10-42-51
Аннотация
Рассмотрены механизмы реакций, протекающих между продуктами гидратации портландцемента и компонентами кислой золы уноса. Отмечается влияние кристаллографических дефектов зерен алита на его гидратационную активность. Сделан вывод о том, что твердые отходы сжигания углей (зола уноса) могут быть использованы в качестве частичной замены портландцемента в производстве бетона, что приведет к снижению выбросов СО2 в атмосферу и сокращению количества золы в отвалах.
Об авторах
Р. В. КулумбеговРоссия
канд. хим. наук, ст. инженер
Л. М. Делицын
Россия
д-р геол.-минерал. наук, гл. науч. сотрудник
О. С. Попель
Россия
д-р техн. наук, гл. науч. сотрудник
М. Г. Сульман
Россия
д-р хим. наук, проректор по научной и инновационной деятельности
Ш. А. Гаджиев
Россия
ген. директор
В. Б. Петропавловская
Россия
д-р техн. наук, профессор
Список литературы
1. Gollakota Anjani R.K., Volli V., Shu C.-M. Progressive utilization prospects of coal fly ash. A review. Science of The Total Environment. 2019. V. 672. P. 951—989. https://doi.org/10.1016/j.scitotenv.2019.03.337.
2. Jensen S.A. Danish Fly Ash Utilization. MRS Online Proceedings Library. 1985. V. 65 P. 27—36. https://doi.org/10.1557/PROC-65-27.
3. https://www.ecoba.com/ecobaccputil.html.
4. Ватин Н.И. Применение зол и золошлаковых отходов в строительстве. Инженерно-строительный журнал. 2011. № 4 (22). С. 16—21. DOI: 10.5862/MCE.22.2.
5. Meyer C. The greening of the concrete industry. Cement and Concrete Composites. 2009. V. 31. Iss. 8. P. 601—605. https://doi.org/10.1016/j.cemconcomp.2008.12.010.
6. Andrew R.M. Global CO2 emissions from cement production. Earth System Science Data. 2018. V. 10. P. 195—217. https://doi.org/10.5194/essd-10-195-2018.
7. Lee C.-M. [et al.]. Evolution of full-length HBV sequences in chronic hepatitis B patients with sequential lamivudine and adefovir dipivoxil resistance. Journal of Hepatology. 2010. V. 52. P. 478—485. https://doi.org/10.1016/j.jhep.2010.01.006.
8. Scrivener K.L., John V.M., Gartner E.M. Eco-efficient cements: potential, economically viable solutions for a low-CO2, cement-based materials industry. Cement and Concrete Research. 2018. V. 114. P. 2—26. https://doi.org/10.1016/j.cemconres.2018.03.015.
9. Wang X.-Y., Park K.-B. Analysis of compressive strength development of concrete containing high volume fly ash. Construction and Building Materials. 2015. V. 98. P. 810—819. https://doi.org/10.1016/j.conbuildmat.2015.08.099.
10. Delitsyn L.M. [et al.]. Processing of Ash and Slag Waste from Coal-Fired Thermal Power Plants and Extraction of Commercial Products from the Waste (Review). Thermal Engineering. 2025. V. 72. No. 3. P. 203—220. https://doi.org/10.1134/S0040601524700836.
11. Брыков А.С. Химия силикатных и кремнеземсодержащих вяжущих материалов. Учебное пособие. СПб., СПбГТИ(ТУ), 2011. 147 с.
12. Тюкавкина В.В., Касиков А.Г., Гуревич Б.И. Структурообразование цементного камня, модифицированного добавкой нанодисперсного диоксида кремния. Строительные материалы. 2018. № 11. С. 31—35. https://doi.org/10.31659/0585-430X-2018-765-11-31-35.
13. Бабков В.В. [и др.]. Роль аморфного микрокремнезема в процессах структурообразования и упрочнения бетонов. Строительные материалы. 2010. № 6. С. 44—46. EDN: MTHFVF.
14. Smarzewski P. Influence of silica fume on mechanical and fracture properties of high performance concrete. Procedia Structural Integrity. 2019. V. 17. P. 5—12. https://doi.org/10.1016/j.prostr.2019.08.002.
15. Vijayan D.S., Devarajan P., Sivasuriyan A. A review on eminent application and performance of nano based silica and silica fume in the cement concrete. Sustainable Energy Technologies and Assessments. 2023. V. 56 (1). P. 103105. https://doi.org/10.1016/j.seta.2023.103105.
16. Al Tawaiha H., Alhomaidat F., Eljufout T. A review of the effect of nano-silica on the mechanical and durability properties of cementitious composites. Infrastructures. 2023. V. 8 (9). P. 18. https://doi.org/10.3390/infrastructures8090132.
17. Zhang L. [et al.]. A comprehensive review of cementitious composites modified with nano silica: fabrication, microstructures, properties and applications. Construction Building Materials. 2023. V. 409. P. 133922. https://doi.org/10.1016/j.conbuildmat.2023.133922.
18. Tabish M., Zaheer M.M., Baqi A. Effect of nano-silica on mechanical, microstructural and durability properties of cement-based materials: a review. Journal of Building Engineering. 2023. V. 65. P. 105676. https://doi.org/10.1016/j.jobe.2022.105676.
19. Mohana R., Bavithra K. Influence of nano materials on the macro and micro structural behaviour of high performance concrete using interfacial transition zone approach. Construction Building Materials. 2023. V. 397. P. 132465. https://doi.org/10.1016/j.conbuildmat.2023.132465.
20. Zhuang C., Chen Y. The effect of nano-SiO2 on concrete properties: a review. Nanotechnology Reviews. 2019. V. 8 (1) P. 562—572. https://doi.org/10.1515/ntrev-2019-0050.
21. Kumar S., Kumar A., Kujur J. Influence of nanosilica on mechanical and durability properties of concrete. Structures and Buildings. 2019. V. 172. P. 781—788. https://doi.org/10.1680/jstbu.18.00080.
22. Bellmann F. [et al.]. Improved evidence for the existence of an intermediate phase during hydration of tricalcium silicate. Cement and Concrete Research. 2010. V. 40. P. 875—884. https://doi.org/10.1016/j.cemconres.2010.02.007.
23. Scrivener K., Nonat A. Hydration of cementitious materials, present and future. Cement and Concrete Research. 2011. V. 41. P. 651—665.https://doi.org/10.1016/j.cemconres.2011.03.026.
24. Juilland P., Gallucci E., Flatt R., Scrivener K. Dissolution theory applied to the induction period in alite hydration. Cement and Concrete Research. 2010. V. 40 (6). P. 831—844. https://doi.org/10.1016/j.cemconres.2010.01.012.
25. Zheng Q. [et al.]. Alite hydration at the single grain level. Cement and Concrete Composites. 2023. V. 144. P. 105297. https://doi.org/10.1016/j.cemconcomp.2023.105297.
26. Scrivener K. [et al.]. Advances in understanding cement hydration mechanisms. Cement and Concrete Research. 2019. V. 124. P. 105823. https://doi.org/10.1016/j.cemconres.2019.105823.
27. Dvořák K. [et al.]. Synthesis of M1 and M3 alite polymorphs and accuracy of their quantification. Cement and Concrete Research. 2023. V. 163. P. 107016. https://doi.org/10.1016/j.cemconres.2022.107016.
28. Li X. [et al.]. Effect of SO3 and MgO on Portland cement clinker: Formation of clinker phases and alite polymorphism. Construction and Building Materials. 2014. V. 58. P. 182—192. http://dx.doi.org/10.1016/j.conbuildmat.2014.02.029.
29. Zheng Q. [et al.]. Atomic-scale Identification of Defects in Alite. Cement and Concrete Research. 2024. V. 176. P. 107391. https://doi.org/10.1016/j.cemconres.2023.107391.
30. Zheng Q. [et al.]. A covalent organic framework onion structure. Materials Today. 2022. V. 60. P. 98—105. https://doi.org/10.1016/j.mattod.2022.09.002.
31. Narayan J. Discovery of double helix of screw dislocations: a perspective. Material Research Letters. 2021. V. 9. P. 453—457. https://doi.org/10.1080/21663831.2021.1973131.
32. Gallego H., Toro E., Rojas R. State of the Art.: Process of Pozzolan Formation from Ash and its Applications. Reviews on Engineering and Construction. 2020. V. 35. P. 119—125. https://doi.org/10.4067/S0718-50732020000200119.
33. Heikal M. [et al.]. Pozzolanic Activity of Fly Ash. Silicates Industriels. 2003. V. 68 (9—10). P. 111—117.
34. Sakai E. [et al.]. Hydration of Fly Ash Cement. Cement and Concrete Research. 2005. V. 35. P. 1135—1140. https://doi.org/10.1016/j.cemconres.2004.09.008.
35. Golewski G.L. Effect of Fly Ash Addition on the Fracture Toughness of Plain Concrete at Third Model of Fracture. Journal of Civil Engineering and Management. 2017. V. 23. P. 613—620. https://doi.org/10.3846/13923730.2016.1217923.
36. Tkaczewska E. Effect of Chemical Composition and Network of Fly Ash Glass on the Hydration Process and Properties of Portland-Fly Ash Cement. Journal of Material Engineering and Performance. 2021. V. 30. P. 9262—9282. https://doi.org/10.1007/s11665-021-06129-w.
37. Narmluk M., Nawa T. Effect of Curing Temperature on Pozzolanic Reaction of Fly Ash in Blended Cement Paste. International Journal of Chemical Engineering Application. 2014. V. 5. P. 31—35. https://doi.org/10.7763/IJCEA.2014.V5.346.
38. Snellings R. Solution‐Controlled Dissolution of Supplementary Cementitious Material Glasses at pH 13: The Effect of Solution Composition on Glass Dissolution Rates. Journal of American Ceramic Society. 2013. V. 96. P. 2467—2475. https://doi.org/10.1111/jace.12480.
39. Pustovgar E. [et al.]. Influence of aluminates on the hydration kinetics of tricalcium silicate. Cement and Concrete Research. 2017. V. 100. P. 245—262. https://doi.org/10.1016/j.cemconres.2017.06.006.
40. Nocuń‐Wczelik W. Heat Evolution in Hydrated Cementitious Systems Admixtured with Fly Ash. Journal of Thermal Analysis and Calorimetry. 2001. V. 65. P. 613—619. https://doi.org/10.1023/a:1017970228316.
41. Guo W. Structure and Pozzolanic Activity of Calcined Coal Gangue during the Process of Mechanical Activation. Journal of Wuhan University of Technology-Material Science Edition. 2009. V. 24 (2). P. 326—329. https://doi.org/10.1007/s11595-009-2326-7.
42. Kristof E., Juhasz A.Z., Vassanyi I. The Effect of Mechanical Treatment on the Crystal Structure and Thermal Behavior of Kaolinite. Clays and Clay Minerals. 1993. V. 41(5). P. 608—612. https://doi.org/10.1346/CCMN.1993.0410511.
43. Singh M., Siddique R., Singh J. Coal fly ash. Sustainable Concrete Made with Ashes Dust from Different Sources for Material Properties and Applications. 2022. P. 1—29. https://doi.org/10.1016/B978-0-12-824050-2.00012-7.
44. Rumman R., Alam Sh.M. Does wood fly ash (WFA) have pozzolanic property? A study on low- and high-temperature partially burnt WFA compared to classes C and F coal fly ash (CFA). Construction and Building Materials. 2025. V. 471. P. 1471. https://doi.org/10.1016/j.conbuildmat.2025.140700.
45. Ravina D. Optimized determination of PFA (Fly Ash) fineness with reference to pozzolanic activity. Cement and Concrete Research. 1980. V. 10. P. 573—580. https://doi.org/10.1016/0008-8846(80)90101-5.
46. Lee S.H. [et al.]. Characterization of fly ash directly collected from electrostatic precipitator. Cement and Concrete Research. 1999. V. 29. P. 1791—1797. https://doi.org/10.1016/S0008-8846(99)00169-6.
47. Snellings R. [et al.]. Classification and Milling Increase Fly Ash Pozzolanic Reactivity. Frontiers in Built Environment. 2021. V. 7. P. 670996. https://doi.org/10.3389/fbuil.2021.670996.
48. Sevim Ö., Demir Ý. Optimization of fly ash particle size distribution for cementitious systems with high compactness. Construction and Building Materials. 2019. V. 195. P. 104—114. https://doi.org/10.1016/j.conbuildmat.2018.11.080.
49. HemalathaT., Ramaswamy A. A review on fly ash characteristics – Towards promoting high volume utilization in developing sustainable concrete. Journal of Cleaner Production. 2017. V. 147. P. 546—559. https://doi.org/10.1016/j.jclepro.2017.01.114.
50. Shi C. [et al.]. Characteristics and pozzolanic reactivity of glass powders. Cement and Concrete Research. 2005. V. 35. P. 987—993. https://doi.org/10.1016/j.cemconres.2004.05.015.
51. Zhang T.S. [et al.]. Effect of size fraction on composition and pozzolanic activity of high calcium fly ash. Advances in Cement Researches. 2011. V. 23 P. 299—307. https://doi.org/10.1680/adcr.2011.23.6.299.
52. Zhao Y. [et al.]. The particle-size effect of waste clay brick powder on its pozzolanic activity and properties of blended cement. Journal of Cleaner Production. 2020. V. 242. P. 118521. https://doi.org/10.1016/j.jclepro.2019.118521.
53. Kiattikomol K. [et al.]. A study of ground coarse fly ashes with different finenesses from various sources as pozzolanic materials. Cement and Concrete Composites. 2001. V. 23. P. 335—343. https://doi.org/10.1016/S0958-9465(01)00016-6.
54. Yamamoto T. Formulation optimization and proposal of Assessed Pozzolanic-activity Index (API) method for rapid evaluation of pozzolanic activity of fly ash. Construction and Building Materials. 2024. V. 432. P. 136394. https://doi.org/10.1016/j.conbuildmat.2024.136394.
55. Sakai E. [et al.]. Hydration of fly ash cement. Cement and Concrete Research. 2005. V. 35. P. 1135—1140. https://doi.org/10.1016/j.cemconres.2004.09.008.
56. Hubbard F.H., Dhir R.K., Ellis M.S. Pulverized-fuel ash for concrete: Compositional characterization of United Kingdom PFA. Cement and Concrete Research. 1985. V. 15. P. 185—198. https://doi.org/10.1016/0008-8846(85)90025-0.
57. Thomas M., Jewell R., Jones R. Coal fly ash as a pozzolan. Coal Combustion Products. 2017. P. 121-154. https://doi.org/10.1016/B978-0-08-100945-1.00005-8
58. Martin L.H.J. [et al.]. Influence of fly ash on the hydration of calcium sulfoaluminate cement. Cement and Concrete Research. 2017. V. 95. P. 152—163. https://doi.org/10. 1016/j.cemconres.2017.02.030.
59. Londono-Zuluaga D. [et al.]. Influence of fly ash blending on hydration and physical behavior of belite—alite—ye’elimite cements. Materials and Structures. 2018. V. 51. P. 128. https://doi.org/10.1617/s11527-018-1246-4.
60. De la Torre S. [et al.]. Structure of stratlingite and effect of hydration methodology on microstructure. Advances in Cement Research. 2016. V. 28. P. 13—22. http://dx.doi.org/10.1680/adcr.14.00104.
61. Goujon N. [et al.]. Chemical Upcycling of PET Waste towards Terephthalate Redox Nanoparticles for Energy Storage. Sustainable Chemistry. 2021. V. 2. P. 610—621. https://doi.org/10.3390/suschem2040034.
62. Heikaewski G.L. The Role of Pozzolanic Activity of Siliceous Fly Ash in the Formation of the Structure of Sustainable Cementitious Composites. Sustainable Chemistry. 2022. V. 3. P. 520—534. https://doi.org/10.3390/suschem3040032.
63. Guan J. [et al.]. Experimental Study on the Effect of Compound Activator on the Mechanical Properties of Steel Slag Cement Mortar. Crystals. 2021. V. 11. P. 658. https://doi.org/10.3390/cryst11060658.
64. Kaya M., Karahan O., Duran Atis C. Influence of Silica Fume Additive and Activator Ratio on Mechanical Properties in Slaked Lime-Based Alkali-Activated Mortars. Iranian Journal of Science and Technology – Transactions of Civil Engineering. 2023. V. 47. P. 873—889. https://doi.org/10.1007/s40996-022-00960-4.
65. Barbhuiya S.A. [et al.]. Properties of fly ash concrete modified with hydrated lime and silica fume. Construction and Building Materials. 2009. V. 23. P. 3233—3239. https://doi.org/10.1016/j.conbuildmat.2009.06.001.
66. Leung H.Y. [et al.]. Sorptivity of self-compacting concrete containing fly ash and silica fume. Construction and Building Materials. 2016. V. 113. P. 369—375. https://doi.org/10.1016/j.conbuildmat.2016.03.071.
67. Wang A., Zhang C., Sun W. Fly Ash Effects: I. The Morphological Effect of Fly Ash. Cement and Concrete Research. 2003. V. 33. P. 2023—2029. https://doi.org/10.1016/S0008-8846(03)00217-5.
68. Bai W. [et al.]. Experimental Study on Uniaxial Compression Mechanical Properties of Recycled Concrete with Silica Fume Considering the Effect of Curing Age. Construction and Building Materials. 2022. V. 350. P. 128758. https://doi.org/10.1016/j.conbuildmat.2022.128758.
69. Пузатова А.В. [и др.]. Зола-уноса при производстве бетонов различного назначения и сухих строительных смесей. Строительство и реконструкция. 2023. № 5 (109) С. 132—147. https://doi.org/10.33979/2073-7416-2023-109-5-132-147.
70. Han Q. [et al.]. Comprehensive Review of the Properties of Fly Ash-Based Geopolymer with Additive of Nano-SiO2. Nanotechnology Reviews. 2022. V. 1. P. 1478—1498. https://doi.org/10.1515/ntrev-2022-0092.
71. Ibrahim Y.E. [et al.]. Mechanical Performance of Date-Palm- Fiber-Reinforced Concrete Containing Silica Fume. Buildings. 2022. V.12. P. 1642. https://doi.org/10.3390/buildings12101642.
72. Szcześniak A., Zychowicz J., Stolarski A. Influence of Fly Ash Additive on the Properties of Concrete with Slag Cement. Materials. 2020. V. 13. P. 3265. https://doi.org/10.3390/ma13153265.
73. Golewski G.L. An Analysis of Fracture Toughness in Concrete with Fly Ash Addition, Considering All Models of Cracking. 7th International Conference on Advanced Materials and Structures – AMS 2018. IOP Conference Series. Material Science and Engineering. 2018. V. 416. P. 012029. https://doi.org/10.1088/1757-899X/416/1/012029.
74. Li Y., Wu B., Wang R. Critical Review and Gap Analysis on the Use of High-volume Fly Ash as a Substitute Constituent in Concrete. Construction and Building Materials. 2022. V. 341. P. 127889. https://doi.org/10.1016/j.conbuildmat.2022.127889.
Рецензия
Для цитирования:
Кулумбегов Р.В., Делицын Л.М., Попель О.С., Сульман М.Г., Гаджиев Ш.А., Петропавловская В.Б. Зола уноса в бетоне: механизмы взаимодействия и продукты реакций. Часть 1. Кислые золы. Экология и промышленность России. 2025;29(10):42-51. https://doi.org/10.18412/1816-0395-2025-10-42-51
For citation:
Kulumbegov R.V., Delitsyn L.M., Popel O.S., Sulman M.G., Gadzhiev Sh.A., Petropavlovskaya V.B. Fly Ash in Concrete: Interaction Mechanisms and Reaction Products. Part 1. Acidic Fly Ashes. Ecology and Industry of Russia. 2025;29(10):42-51. (In Russ.) https://doi.org/10.18412/1816-0395-2025-10-42-51



























