The Influence of the Forms of Heavy Metals in Bottom Sediments on the Process of Their Purification dy Fractionation
https://doi.org/10.18412/1816-0395-2025-10-30-35
Abstract
A study was conducted to visualize the speciation of heavy metals—copper (Cu) and nickel (Ni)—in contaminated bottom sediments and their influence on the cleaning process using vibrating screens. It was shown that the metals in the studied samples were primarily present in the form of sulfides: either with dense cementation by clay material along the entire contour of the aggregate, or with localized (point) cementation by clay particles. A dense cementation effect of Cu and Ni aggregates along the contours on the surfaces of quartz and potassium feldspar grains was observed in samples with elevated organic matter content. It was found that low organic matter content resulted only in localized cementation of heavy metals. The average size of all observed nickel and copper sulfides did not exceed 10–15 μm. It was concluded that increasing the mesh size of the screen leads to a rise not only in the amount of heavy metals retained but also in the volume of soil passing through the screen. This may pose challenges due to the large-scale removal of the undersized ("clean") soil fraction, resulting in high transport and disposal costs.
About the Authors
N. Yu. GrechishchevaRussian Federation
Dr. Sci. (Chem.), Associate Professor
A. N. Abramov
Russian Federation
Engineer, Assistant
K. A. Baleva
Russian Federation
Master's Student
G. K. Karimov
Russian Federation
Master's Student
References
1. Мурыгина В.П., Гайдамака С.Н., Гладченко М.А., Лопатин К.И., Смирнов А.Д. Донные отложения водных объектов и технологии для очистки их от различных загрязнений. М., Изд-во ООО "ИГ Изопроект", 2016. 242 с.
2. Извекова Т.В., Гусев Г.И., Гордина Н.Е., Ситанов Р.Д., Гущин А.А. Оценка влияния шламонакопителя железосодержащих отходов на компоненты окружающей среды. Изв. вузов. Химия и хим. технология. 2024. Т. 67. № 11. С. 145—153. DOI: 10.6060/ivkkt.20246711.7140.
3. Линник Л.П., Набиванец Б.И. Формы миграции металлов в пресных поверхностных водах. Л., Гидрометеоиздат. 1986. 270 с.
4. Wieser P., Jenner F. Chalcophile Elements. Systematics and Relevance. In book: Reference Module in Earth Systems and Environmental Sciences. 2021. P. 67—80. DOI:10.1016/B978-0-08-102908-4.00092-8.
5. Базова М.М., Кошевой Д.В. Оценка современного состояния качества вод Норильского промышленного района. Арктика. Экология и экономика. 2017. № 3(27). С. 49—60.
6. Peng W., Li X., Xiao S., Fan W. Review of remediation technologies for sediments contaminated by heavy metals. Journal of Soils and Sediments. 2018. Vol. 18. No. 7. P. 1701—1719. https://doi.org/10.1007/s11368-018-1921-7.
7. Lee G., Kim K. Remediation of sediments contaminated by harmful heavy metals using aluminum sulfate. Sustainable approach for practical applications. Marine Pollution Bulletin. 2024. Vol. 202. P. 116345.
8. Remediation of soil and sediment contaminated by Heavy Metals. Impianti di Soil Washing e Filtropresse. Diemme Soil Washing. URL: https://www.diemmesoilwashing.com/sectorsand-technologies/remediation-and-sediments-contaminated-byheavy-metals/?lang=en (date of request 08.05.2024).
9. Gibbs R. Transport phases of transition metals in the Amazon and Yukon Rivers. Geological Society of America Bulletin. 1977. Vol. 88. P. 824—843.
10. Даувальтер В.А. Геоэкология донных отложений озер. Мурманск, Изд-во МГТУ, 2012. 242 с.
11. Horowitz A., Cronan D.S. The geochemistry of basal sediments from the North Atlantic Ocean. Marine Geology. 1976. Vol. 20. No. 3. P. 205—228. https://doi.org/10.1016/0025-3227(76)90116-X.
12. Малышева Т.И. Инактивация тяжелых металлов Fe-конкрециями пойменных почв. Тез. докл. Всес. конф. "Fe-конкреции в почвах: состав, генезис, строение". Мецниереба. Тбилиси, 1990. С. 38.
13. Понизовский А.А., Мироненко Е.В. Механизмы поглощения свинца(II) почвами. Почвоведение. 2001. № 4. С. 418—429.
14. Rubio B., Nombela M.A., Vilas F. Geochemistry of major and trace elements in sediments of Ria de Vigo (NW Spain). An assessment of metal pollution. Marine Pollution Bulletin. 2000. Vol. 40. P. 968—980. DOI:10.1016/S0025-326X(00)00039-4.
15. Martinez C.E., McBride M.B., Kandianis M.T., Duxbury J.M., Yoon S., Bleam W.F. Zin-sulfur and cadmium-sulfur association in metalliferous peats: evidence from spectroscopy, distribution coefficients, and phytoavailability. Environ. Sci. Technol. 2002. Vol. 36. P. 3683—3689. DOI: 10.1021/es011333e.
16. Методика выполнения измерений массовой доли элементов в пробах почв, грунтов и донных отложениях методами атомно-эмиссионной и атомно-абсорбционной спектрометрии. М-МВИ-80-2008. Санкт-Петербург, 2008. [Электронный ресурс]. URL: https://www.opengost.ru (дата обращения 24.03.2025).
17. Межгосударственный стандарт ГОСТ 26213-2021 "Почвы. Методы определения органического вещества"(введен в действие приказом Федерального агентства по техническому регулированию и метрологии от 31 августа 2021 г. № 892-ст). [Электронный ресурс]. URL: https://base.garant.ru (дата обращения 24.03.2025).
Review
For citations:
Grechishcheva N.Yu., Abramov A.N., Baleva K.A., Karimov G.K. The Influence of the Forms of Heavy Metals in Bottom Sediments on the Process of Their Purification dy Fractionation. Ecology and Industry of Russia. 2025;29(10):30-35. (In Russ.) https://doi.org/10.18412/1816-0395-2025-10-30-35



























