

Life Cycle Assessment of Polymer Waste Recycling Methods Using High-pressure Polyethylene and Waste Tyre Rubber as Examples
https://doi.org/10.18412/1816-0395-2025-7-33-39
Abstract
The life cycle of the proposed ways of polymer materials recycling was assessed. Three scenarios for the recycling of polyolefins and rubber from used tyres are considered: the basic one – incineration, as well as traditional pyrolysis and slow pyrolysis under pressure. For each case an inventory analysis was performed: quantification of input/output streams, development of a material balance sheet and life cycle diagram. The environmental impact of technical solutions was analysed. It is concluded that incineration is unacceptable for both types of waste. It is found that the method of slow pressurised pyrolysis has the lowest risks of environmental impact.
About the Authors
M.P. KrasnovskikhRussian Federation
Cand. Sci. (Eng.), Associate Professor
G.V. Ilyinykh
Russian Federation
Cand. Sci. (Eng.), Associate Professor
I.G. Mokrushin
Russian Federation
Cand. Sci. (Chem.), Associate Professor; Leading Research Fellow
Ya.I. Vaisman
Russian Federation
Dr. Sci. (Med.), Professor
References
1. Онищенко Г.Г. Актуальные проблемы и перспективы развития методологии анализа риска в условиях современных вызовов безопасности для здоровья населения Российской Федерации. Анализ риска здоровью. 2023. № 4. С. 4—18. DOI: 10.21668/health.risk/2023.4.01.
2. Panda A.K., Singh R.K., Mishra D.K. Thermolysis of waste plastics to liquid fuel. A suitable method for plastic waste management and manufacture of value added products – A world prospective. Renewable and Sustainable Energy Reviews. 2010. Vol. 14(1). P. 233—248. doi:10.1016/j.rser.2009.07.005.
3. Romero-Gómez M.I., Rubio-De-Hita P., Pedreño-Rojas M.A., Morales-Conde M.J., Pérez-Gálvez F. Recycling low-density polyethylene waste to produce eco-friendly gypsum composites. Waste Management and Environmental Impact XI. 2022. Vol. 257. P. 73—81. DOI:10.2495/WMEI220071.
4. Arabiourrutia M., Lopez G., Artetxe M., Alvarez J., Bilbao J., Olazar M. Waste tyre valorization by catalytic pyrolysis – A review. Renewable and sustainable energy reviews. 2020. Vol. 129. ID. 109932. doi:10.1016/j.rser.2020.109932
5. Gebre S. H., Sendeku M.G., Bahri M. Recent trends in the pyrolysis of non‐degradable waste plastics. ChemistryOpen. 2021. Vol. 10(12), P. 1202—1226. https://doi.org/10.1002/open.202100184.
6. Provo J., Fava J., Baer S. Life cycle assessment and the chemical engineer: a marriage of convenience. Current opinion in chemical engineering. 2013. Vol. 2. No. 3. P. 278—281. doi:10.1016/j.coche.2013.05.001.
7. Lopez E.C.R. The present and the future of polyethylene pyrolysis. Eng. Proc. 2023. Vol. 37. ID. 74. https://doi.org/10.3390/ECP2023-14695.
8. Maqsood T., Dai J., Zhang Y., Guang M., Li B. Pyrolysis of plastic species. A review of resources and products. Journal of Analytical and Applied Pyrolysis. 2021. Vol. 159. ID. 105295. doi:10.1016/j.jaap.2021.105295.
9. Ketov A., Korotaev V., Sliusar N., Bosnic V., Krasnovskikh M., Gorbunov A. Baseline data of low-density polyethylene continuous pyrolysis for liquid fuel manufacture. Recycling. 2022. Vol. 7. ID. 2. https://doi.org/10.3390/recycling7010002.
10. Han W., Han D., Chen H. Pyrolysis of waste tires: a review. Polymers. 2023. Vol. 15. ID. 1604. https://doi.org/10.3390/polym15071604.
11. Zhang M., Qi. Y., Zhang W., Wang M., Li J., Lu Y., He J., Cao H., Xuan T., Xu H., S., Zhang.et al. A review on waste tires pyrolysis for energy and material recovery from the optimization perspective. Renewable and sustainable energy reviews. 2024. Vol. 199. ID. 114531. DOI: 10.1016/j.rser.2024.114531.
12. Geyer R., Jambeck J.R., Law K.L. Production, use, and fate of all plastics ever made. Science Advances. 2017. Vol. 3. No. 7. ID. 1700782. doi:10.1126/sciadv.1700782.
13. Rybiński P., Janowska G., Kucharska-Jastrzabek A., Pająk A., Grochowalska I., Wesolek D., Bujnowicz K. Flammability of vulcanizates of diene rubbers. Journal of thermal analysis and calorimetry. 2011. Vol. 107. No. 3. P. 1219—1224. doi:10.1007/s10973-011-1728-x.
14. Dzene I., Rochas C., Blumberga D., Rosa M., Erdmanis A. Energy recovery from end-of-life tyres: untapped possibility to reduce CO2 emissions. Scientific journal of riga technical university. Environmental and climate technologies. 2010. Vol. 4. No. 1. P. 35—41. doi:10.2478/v10145-010-0015-6.
15. Бухаркина Т.В., Вержичинская С.В., Тарханова И.Г., Коновалов А.В. Переработка твердого остатка пиролиза автомобильных шин. Известия Томского политехнического университета. Инжиниринг георесурсов. 2023 Т. 334. № 8. С. 79—90. DOI 10.18799/24131830/2023/8/4017.
16. Onishchenko G.G., Zaitseva N.V., Kleyn S.V., Glukhikh M.V., Kir’yanov D.A., Kamaltdinov M.R. Variable effects of weather and climate on life expectancy and age-specific mortality from circulatory diseases in the regions of the Russian Federation. Russ. meteorol. hydrol. 2024. Vol. 49. P. 149—157. https://doi.org/10.3103/S1068373924020080.
17. Ravishankara A.R., Daniel J.S., Portmann R.W. Nitrous Oxide (N2O): The dominant ozone-depleting substance emitted in the 21st century. Science. 2009. Vol. 326. No. 5949. P. 123—125. doi:10.1126/science.1176985.
Review
For citations:
Krasnovskikh M., Ilyinykh G., Mokrushin I., Vaisman Ya. Life Cycle Assessment of Polymer Waste Recycling Methods Using High-pressure Polyethylene and Waste Tyre Rubber as Examples. Ecology and Industry of Russia. 2025;29(7):33-39. (In Russ.) https://doi.org/10.18412/1816-0395-2025-7-33-39