Preview

Ecology and Industry of Russia

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Ecological Monitoring of Pollution of Surface Water and Bottom Sediments of the Volga River by Toxic Impurities

https://doi.org/10.18412/1816-0395-2025-6-66-71

Abstract

Gas-chromatographic analysis was carried out to determine the phenol content in the bottom sediments of the Volga River and other contaminations of the aquatic environment with toxic impurities. The conclusion about unfavorable ecological situation was made. Dependences linking qualitative and quantitative indicators of aquatic environment condition from the year of ecological monitoring are found.

About the Authors

A.V. Pavlov
Kazan State Power Engineering University
Russian Federation

Post-graduate Student



A.V. Taneyeva
Kazan State Power Engineering University
Russian Federation

Cand. Sci. (Chem.), Associate Professor



V.F. Novikov
Kazan State Power Engineering University
Russian Federation

Dr. Sci. (Chem.), Professor



I.V. Marzoeva
Kazan State Power Engineering University
Russian Federation

Cand. Sci. (Philology), Associate Professor



G.Z. Gilyazieva
Kazan State Power Engineering University
Russian Federation

Cand. Sci. (Philology), Associate Professor



D.A. Demidkina
Kazan State Power Engineering University
Russian Federation

Cand. Sci. (Philology), Associate Professor



References

1. Forstner U. Sediment dynamics and pollutant mobility in rivers. An interdisciplinary approach. Lakes and Reservoirs. Science, Policy and Management for Sustainable Use. 2004. Vol. 9. Iss. I. P. 25—40. DOI: 10.1007/978-3-540-34785-9.

2. Di Toro D.M., McGrath J.A., Hansen D.J., Berry W.J., Paquin P.R., Mathew R., Wu K.B., Santore R.C. Predicting sediment metal toxicity using a sediment biotic ligand model: methodology and initial application. Environ Toxicol Chem. 2005. Vol. 24(10). P. 2410—27. doi: 10.1897/04-413r.1. PMID: 16268143.

3. Решетняк О.С., Закруткин В.Е. Донные отложения как источник вторичного загрязнения речных вод металлами (по данным лабораторного эксперимента). Изв. вузов. Северо-Кавказский регион. Сер. Естественные науки. 2016. № 4 (192). С. 102—109. DOI 10.18522/0321-3005-2016-4-102-109.

4. Lu Y., Wang R., Zhang Y., Su H., Wang P., Jenkins A., Ferrier R.C., Bailey M., Squire G. Ecosystem health towards sustainability. Ecosystem Health and Sustainability. 2015. No. 1 (1). P. 1—15. DOI: 10.1890/EH514-0013.1.

5. Воробьев Д.С., Перминова В.В. Методические аспекты нового способа определения массы нефти на единицу площади донных отложений водных объектов. Экология и промышленность России. 2020. Т. 24. № 12. С. 28—31. DOI 10.18412/1816-0395-2020-12-28-31.

6. Santschi P., Hohener P., Benoit G., Buchholtz-ten Brink M. Chemical processes at the sediment-water interface, Marine-Chemistry. 1990. Vol. 30. P. 269—315. Doi 10.1016/0304-4203(90)90076-O.

7. Moncayo-Lasso A., Pulgarin C., Benнtez N. Degradation of DBPs'precursors in river water before and after slow sand filtration by photo-Fenton process at pH 5 in a solar CPC reactor. Water Research. 2008. Vol. 42, Iss. 15. P. 4125—-4132. DOI. 10.1016/j.watres.2008.07.014.

8. Prasse C., Ford B., Nomura D.K., Sedlak D.L. Unexpected transformation of dissolved phenols to toxic dicarbonyls by hydroxyl radicals and UV light. Proceedings of the National Academy of Sciences. 2018. Vol. 115. No. 10. P. 2311—2316. Doi: 10.1073/pnas.1715821115.

9. Latkar M., Chakrabarti T. Resorcinol, catechol and hydroquinone biodegradation in mono and binary substrate matrices in upflow anaerobic fixed-film fixed-bed reactors. Water Research. 1994. Vol. 28. Iss. 3. P. 599—607. Doi.10.1016/0043-1354(94)90010-8.

10. Kumar P., Nemati M., Hill G.A. Biodegradation kinetics of 1,4-benzoquinone in batch and continuous systems. Biodegradation. 2011. Vol. 22(6). P. 1087—1093. Doi: 10.1007/s10532-011-9465-1.

11. Fattahi N., Samadi S., Assadi Y., Hosseini M.R.M. Solid-phase extraction combined with dispersive liquid—liquid microextraction-ultra preconcentration of chlorophenols in aqueous samples, Journal of Chromatography A. 2007. Vol. 1169. Iss. 1—2. P. 63—69. Doi.10.1016/j.chroma.2007.09.002.

12. Xiaowen Xie, Xiaoguo Ma, LihuiGuo, Yinming Fan, GuolongZeng, Mengyuan Zhang, Jing Li. Novel magnetic multi-templates molecularly imprinted polymer for selective and rapid removal and detection of alkylphenols in water, Chemical Engineering Journal. 2019. Vol. 357. P. 56—65. doi.org/10.1016/j.cej.2018.09.080.

13. Gubin A.S., Sukhanov P.T., Kushniz A.A., Shikhalev Kh.S., Potapov M.A. Application of magnetic sorbents modified with molecular imprinted polymers for screening of phenolic xenoestrogens. Analytics and control. 2023. Vol 27. No. 1. P. 32—41. DOI: 10.15826/analitika.2023.27.1.003.

14. Gubin A.S., Kushnir A.A., SukhanovP.T. Sorption concentration of phenols from aqueous media by magnetic molecularly imprinted polymers based on N-vinylpyrrolidone (part 2). Sorbtsionnye I khromatograficheskieprotsessy. 2022. Vol. 22. No. 3. P. 274—283. DOI:10.17308/sorpchrom.2022.22/9334.

15. Khayyun T.S., Mseer A.H. Comparison of the experimental results with the Langmuir and Freundlich models for copper removal on limestone adsorbent. Appl Water Sci. 2019. Vol. 9. P. 1—8. https://doi.org/10.1007/s13201-019-1061-2.


Review

For citations:


Pavlov A., Taneyeva A., Novikov V., Marzoeva I., Gilyazieva G., Demidkina D. Ecological Monitoring of Pollution of Surface Water and Bottom Sediments of the Volga River by Toxic Impurities. Ecology and Industry of Russia. 2025;29(6):66-71. (In Russ.) https://doi.org/10.18412/1816-0395-2025-6-66-71

Views: 158


ISSN 1816-0395 (Print)
ISSN 2413-6042 (Online)