

Hydrochemical Dynamics of River Flow in a Mountain River (Katun River as an Example)
https://doi.org/10.18412/1816-0395-2025-1-59-65
Abstract
It is noted that the efficiency of protection and rational use of water resources decreases due to uncertainty of information about spontaneously changing indicators of their quality, uniqueness of such variability and, consequently, due to impossibility to develop uniform rules of economic use of water bodies and watercourses. It is shown that these problems arise not only in water bodies subjected to intensive anthropogenic impact, but also in those remaining in practically natural conditions. The results of the authors' studies of the rivers of the Altai Mountains are presented, where such features of melt (freshly formed) water as structural shifts in time series of its quality indicators, clustering of volatility, non-seasonal cyclicity and long memory of time series were discovered. It was concluded that it is necessary to take into account not only external conditions but also intrinsic dynamic characteristics of water flow to assess water composition and properties in order to reliably predict its quality and ensure efficient water use.
About the Authors
O.M. RosenthalRussian Federation
Dr. Sci. (Eng.), Professor
G.B. Krokhin
Russian Federation
Postgraduate Student; Assistant
References
1. Савичев О.Г., Паромов В.В., Копылова Ю.Г., Хващевская А.А., Гусева Н.В. Эколого-геохимическое состояние поверхностных вод в бассейне р. Катунь (Горный Алтай). Вестник Томского государственного университета. 2013. Т. 366. С. 157—161.
2. Rozental O.M., Fedotov V.Kh. Neural Network Analysis as a Base of the Future System of Water—Environmental Regulation. Water Resources. 2023. Vol. 50. No. 3. Р. 452—463.
3. Peters E. Fractal market analysis: Applying chaos theory to investment and economics. New York, J. Wiley & Sons, 1994. Р. 3044.
4. Jarque C., Bera K. A test for normality of observations and regression residuals. International Statistical Review. 1987. Vol. 55. No 2. P. 163—172.
5. Sukhorukov I.P. Application of R/S analysis in risk assessment of innovative companies. Management of the social and economic system. 2011. Vol. 1. P. 1—7.
6. Lo A.W. Long-term memory in stock market prices. Econometrica. 1991. Vol. 59. No 5. P. 1279—1313.
7. Pesaran M.H. Time series and panel data econometrics. Oxford University Press, Oxford, 2015. 1104 p.
8. Горяев В.М., Бембитов Д.Б., Мучкаев Д.Н., Аль-Килани В.Х. Модель SARIMA и статистика скользящего окна для локальных метеоданных. Современные наукоемкие технологии. 2019. T. 6. С. 31—38.
9. Нyndman R.J., Athanasopoulos G. Forecasting: principles and practice. Melbourne, OTexts, 2018. 327 p.
10. Granger Cl.W.J. Time Series Analysis, Cointegration, and Applications. American Economic Review. 2004. Vol. 94. No. 3. P. 421—425.
11. Волошин В.П., Желиговская Е.А. Структуры сеток водородных связей и динамика молекул воды в конденсированных водных системах. Рос. хим. журнал. 2001. Т. 45. Вып. 3. C. 31—37.
12. Родникова М.Н. Об упругости пространственной сетки водородных связей в жидкостях и растворах. Структурная самоорганизация в растворах и на границе фаз. М., Изд. ЛКИ, 2008. 250 с.
13. Boffetta G., Ecke R.E. Two-dimensional turbulence. Annual Review of Fluid Mechanics. 2012. Vol. 44. No. 4. Р. 427—451.
14. Eckstein M., Horodecki P. The Experiment Paradox in Physics. Foundations of Science. 2022. Vol. 27. No. 12. P. 1—15. DOI: 10.1007/s10699-020-09711-y.
15. Chashechkin Yu.D., Rosental O.M. River Flow Structure and its Effect on Pollutant Distribution. Water Resources. 2019. Vol. 46. No. 6. Р. 910—918. DOI: 10.1134/S0097807819060022.
Review
For citations:
Rosenthal O., Krokhin G. Hydrochemical Dynamics of River Flow in a Mountain River (Katun River as an Example). Ecology and Industry of Russia. 2025;29(1):59-65. (In Russ.) https://doi.org/10.18412/1816-0395-2025-1-59-65