Preview

Ecology and Industry of Russia

Advanced search

Assessment of the Carbon Footprint of Production of Construction Materials Used in Hydrogen Energy

https://doi.org/10.18412/1816-0395-2024-11-33-39

Abstract

The results of the analysis of production of construction materials used for manufacturing hydrogen life cycle equipment are presented. The aspects of the life cycle of the main construction materials (steel, aluminum, nickel, copper, titanium, platinum, carbon plastics) used in hydrogen power engineering are identified. The results of the carbon footprint assessment for the production of these materials are presented depending on the production technologies, the energy source used and the secondary raw materials. It is established that in the development of a hydrogen gas turbine unit (GTU) the main contribution to carbon footprint is made by titanium (50,9 %) and nickel (37,6 %) alloys, in spite of the fact that more than 50 % of GTU consists of steel. It has been determined that in the production of solid-polymer fuel cells the main contribution to the carbon footprint is made by the smallest construction materials — platinum (78,1 %) and carbon plastics (15,7 %) due to the fact that they have the largest carbon footprint per kg of produced material.

About the Authors

Yu.V. Mozzhegorova
Perm National Research Polytechnic University
Russian Federation

Cand. Sci. (Eng.), Associate Professor



G.V. Ilinykh
Perm National Research Polytechnic University
Russian Federation

Cand. Sci. (Eng.), Associate Professor



V.N. Korotaev
Perm National Research Polytechnic University
Russian Federation

Dr. Sci. (Eng.), Professor



References

1. Соснина Е.Н., Маслеева О.В., Крюков Е.В., Эрдили Н.И. Экологическая оценка жизненного цикла мини-ТЭЦ с различными типами двигателей. Известия ТулГУ. Технические науки. 2021. Вып. 4. С. 206—214.

2. Gulienetti A. Towards hydrogen transportation in gas transmission pipelines. Tesi Di Laurea Magistrale in Energy Engineering – Ingegneria Energetica, 2020. 155 p. [Электронный ресурс]. URL: https://www.politesi.polimi.it/retrieve/cb117ce4-c6cb-4566-aa4e-58211dd6f58a/2021_12_Gulienetti.pdf (дата обращения 13.01.2024).

3. Mozzhegorova Y., Ilinykh G., Korotaev V. Life Cycle Assessment of a Gas Turbine Installation. Energies. 2024. Vol. 17. P. 345.

4. Alamiery A. Advancements in materials for hydrogen production. A review of cutting-edge technologies. ChemPhysMater. 2024. Vol. 3. P. 64—73.

5. Baum Z.J., Diaz L.L., Konovalova T., Zhou Q.A. Materials Research Directions Toward a Green Hydrogen Economy. A Review. ACS Omega. 2022. Vol. 7. P. 32908—32935.

6. Quon W. A Compact and Efficient Steam Methane Reformer for Hydrogen Production. A Dissertation Presented to The Faculty of the Department of Chemical and Biomolecular, Engineering University of Houston. 2012. August. 432 p.

7. Kim M.-S., Lee T., Son Y., Park J., Kim M., Eun H., Park J.-W., Kim Y. Metallic Material Evaluation of Liquid Hydrogen Storage Tank for Marine Application Using a Tensile Cryostat for 20 K and Electrochemical Cell. Processes. 2022. Vol. 10. P. 2401.

8. Sustainability Indicators 2023 report. [Электронный ресурс]. URL: https://worldsteel.org/steel-topics/sustainability/sustainability-indicators/ (дата обращения 19.01.2024).

9. Greenhouse Gas Emissions – Aluminium Sector. [Электронный ресурс]. URL: https://international-aluminium.org/statistics/greenhouse-gas-emissions-aluminium-sector/ (дата обращения 27.09.2023).

10. Wei W. Energy Consumption and Greenhouse Gas Emissions of Nickel Products. Energies. 2020. Vol. 13(21). P. 5664.

11. Энциклопедия технологий 2.0: Производство металлов. Гл. ред. Д. О. Скобелев. ФГАУ "НИИ "ЦЭПП". М., Спб., Реноме, 2022. 378 с.

12. Nilsson A.E., Aragonés M.M., Arroyo F., Dunon V., Angel H., Komnitsas K., Willquist K. Review of the Carbon Footprint of Cu and Zn Production from Primary and Secondary Sources. Minerals. 2017. Vol. 7. P. 168.

13. Lyons R., Newell A., Ghadimi P., Papakostas N. Environmental impacts of conventional and additive manufacturing for the production of Ti-6Al-4V knee implant: A life cycle approach. The International Journal of Advanced Manufacturing Technology. 2021. Vol. 112 (2). P. 787—801.

14. Hwang H., Kweon T., Kang H., Hwang Y. Resource and Greenhouse Gas Reduction Effects through Recycling of Platinum Containing Waste. Sustainability. 2024. Vol. 16. P. 80.

15. Kanemasu M., Nishimura W., Yoshikawa A., Yamamori T., Kobayashi R. Reduction of Environmental Impact by Recycling Waste Composite Material for Aircraft. Mitsubishi Heavy Industries Technical Review. 2018. Vol. 55. No. 2. [Электронный ресурс]. URL: https://www.mhi.co.jp/technology/review/pdf/e552/e552040.pdf (дата обращения: 10.02.2024).


Review

For citations:


Mozzhegorova Yu., Ilinykh G., Korotaev V. Assessment of the Carbon Footprint of Production of Construction Materials Used in Hydrogen Energy. Ecology and Industry of Russia. 2024;28(11):33-39. (In Russ.) https://doi.org/10.18412/1816-0395-2024-11-33-39

Views: 267


ISSN 1816-0395 (Print)
ISSN 2413-6042 (Online)