Preview

Ecology and Industry of Russia

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Microwave Radiation in Wastewater Treatment and Sedimentations Treatment Technologies

https://doi.org/10.18412/1816-0395-2024-7-4-9

Abstract

The main results of research on the use of microwave radiation in wastewater treatment and treatment of their sedimentations, as well as water treatment waste, are presented. The thermal influence of microwaves on the water and sedimentations properties is considered. The experimental data obtained by foreign and domestic specialists for the following processes using microwaves are shown: degradation of organic substances, de-emulsification of oil-containing wastewater, removal of metals, disinfection, intensification of biogas yield, sediments pyrolysis, modification of the absorbents, intensification of compaction and dewatering of natural water treatment sedimentation. New microwave equipment for treatment the various wastes is described.

About the Authors

M.V. Obukhova
Tyumen Industrial University
Russian Federation

Associate Professor



E.I. Vialkova
Tyumen Industrial University
Russian Federation

Cand. Sci. (Eng.), Associate Professor



L.V. Belova
Tyumen Industrial University
Russian Federation

Cand. Sci. (Eng.), Associate Professor



A.M. Fugaeva
Tyumen Industrial University
Russian Federation

Post-graduate Student



E.S. Korshikova
Tyumen Industrial University
Russian Federation

Post-graduate Student



A.D. Lapina
Tyumen Industrial University
Russian Federation

Bachelor



References

1. Yang L., Chen Z., Yang J., Liu Y., Wang J., Yu Y., Gao X. Removal of volatile fatty acid in landfill leachate by the microwave-hydrothermal method. Desalination and Water Treatment. 2014. Vol. 52. P. 4423—4429. DOI: 10.1080/19443994.2013.803712.

2. Vialkova E., Zemlyanova M., Danilov O. Energy efficiency in municipal waste treatment. MATEC Web of Conferences. 2018; 170:04020. DOI:10.1051/matecconf/201817004020.

3. Verma P., Samanta S.K. Microwave-enhanced advanced oxidation processes for the degradation of dyes in water. Environmental Chemistry Letters. 2018. Vol. 16. P. 969—1007. DOI: 10.1007/s10311-018-0739-2.

4. Wang N., Sun X., Zhao Q., Wang P. Treatment of polymer-flooding wastewater by a modified coal fly ash-catalysed Fenton-like process with microwave pre-enhancement: System parameters, kinetics, and proposed mechanism. Chemical Engineering Journal. 2021; 406:126734. DOI: 10.1016/j.cej.2020.126734.

5. Abdurahman N.H., Yunus R.M., Azhari N.H., Said N., Hassan Z. The potential of microwave heating in separating water-in-oil (w/o) emulsions. Energy Procedia. 2017. Vol. 138. P. 1023—1028. DOI: 10.1016/j.egypro.2017.10.123.

6. Малышкина Е.С., Вялкова Е.И., Осипова Е.Ю. Использование природных сорбентов в процессе очистки воды от нефтепродуктов. Вестник Томского государственного архитектурно-строительного университета. 2019. Т. 21. № 1. С. 188—200. DOI: 10.31675/1607-1859-2019-21-1-188-200.

7. Бельчинская Л.И., Ходосова Н.А., Новикова Л.А. Влияние различных механизмов нагрева слоистого алюмосиликата на сорбционные процессы. Сообщение 1. Сорбция воды при тепловом и электромагнитном (СВЧ) нагреве монтмориллонита. Сорбционные и хроматографические процессы. 2017. Т. 17. № 5. С. 781—791.

8. Вялкова Е.И. Извлечение нефтепродуктов из сточных вод природными сорбентами Арктики. Градостроительство и архитектура. 2022. Т. 12. № 4(49). С. 25—33. DOI: 10.17673/Vestnik.2022.04.04.

9. Землянова М.В., Вялкова Е.И. Исследование комбинированного действия сверхвысокочастотного электромагнитного излучения на свойства осадков сточных вод. Экология и промышленность России. 2018. Т. 22. №4. С. 20—25. DOI: 10.18412/1816-0395-2018-4-20-25.

10. Rao B., Su X., Lu X., Wan Y., Huang G., Zhang Y., Xu P., Qiu S., Zhang J. Ultrahigh pressure filtration dewatering of municipal sludge based on microwave pretreatment. Environ Manage. 2019. Vol. 247. P. 588—595. DOI: 10.1016/j.jenvman.2019.06.118.

11. Alhraishawi A., Aslan Ş. Anaerobik çürütme öncesi atik biyolojik çamurlarin mikrodalga radyasyonu ile dezentegrasyonu. Mühendislik Bilimleri Ve Tasarım Dergisi. 2022. 10(2). Р. 740—760. https://doi.org/10.21923/jesd.931036.

12. Coelho N.M.G., Droste R.L., Kennedy K.J. Evaluation of continuous mesophilic, thermophilic and temperature phased anaerobic digestion of microwaved activated sludge. Water Research. 2011. Vol. 45. P. 2822—2834. DOI: 10.1016/j.watres.2011.02.032.

13. Zaker A., Chen Z., Wang X., Zhang Q. Microwaveassisted pyrolysis of sewage sludge: A review. Fuel Processing Technology. 2019. Vol. 187. P. 84—100. DOI: 10.1016/j.fuproc.2018.12.011.

14. Лапина А.Д., Обухова М.В. Обработка отходов водопроводных очистных станций. Современные проблемы земельно-имущественных отношений, урбанизации территории и формирования комфортной городской среды: сборник статей Международной научно-практической конференции. 2022. Т. II. С. 440—446.

15. Vialkova E., Obukhova M., Belova L. Microwave irradiation in technologies of wastewater and wastewater sludge treatment: a review. Water. 2021. Vol. 13. № 13. P. 1784. DOI: 10.3390/w13131784.


Review

For citations:


Obukhova M., Vialkova E., Belova L., Fugaeva A., Korshikova E., Lapina A. Microwave Radiation in Wastewater Treatment and Sedimentations Treatment Technologies. Ecology and Industry of Russia. 2024;28(7):4-9. (In Russ.) https://doi.org/10.18412/1816-0395-2024-7-4-9

Views: 292


ISSN 1816-0395 (Print)
ISSN 2413-6042 (Online)