Preview

Ecology and Industry of Russia

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Electrochemical Oxidation of Ethylene Glycol in Aqueous Media Using Lead Dioxide Titanium Anode

https://doi.org/10.18412/1816-0395-2024-5-25-33

Abstract

Experiments on the electrochemical oxidation of ethylene glycol (EG) have been carried out in laboratory conditions using lead dioxide titanium anode (LDOTA) in electrochemical cell. It has been found that the chemical oxygen consumption in the solution on LDOTA at a current density of 5.5 A/dm2 and processing time of 120 min is reduced to the values that allow its further bio-purification. It has been concluded that the efficiency of the electrochemical oxidation process, leading to further destruction of the EG molecule, is explained by both direct oxidation, in which the hydroxyl radicals arise that oxidize EG on the anode surface, and indirect oxidation, accompanied by the formation of strong oxidizing agents, for example, peroxodisulfuric acid anions capable of oxidizing the organic matter in the solution volume.

About the Authors

V.B. Torshin
"BMT" LLC
Russian Federation

Cand. Sci. (Eng.), Senior Researcher



A.A. Povorov
"BMT" LLC
Russian Federation

Cand. Sci. (Eng.), Gen. Director



M.V. Krotova
"BMT" LLC
Russian Federation

Head of theTechnology Deptment



A.A. Yakusheva
"BMT" LLC
Russian Federation

Head of Technology Sector 02



A.S. Motygina
"BMT" LLC
Russian Federation

Deputy Head of Technology Sector 02



N.M. Protasova
"BMT" LLC
Russian Federation

Chief Engineer of the Project



References

1. Staples C.A., Williams J.B., Craig G.R., Roberts K.M. Fate, effects and potential environmental risks of ethylene glycol. А review Chemosphere. 2001. 43. Р. 377—383.

2. Arana J., Méndez J.O., Melián J.H., Rodríguez J.D., Díaz O.G., Peña J.P. Thermal effect of carboxylic acids in the degradation by photo-Fenton of high concentrations of ethylene glycol. Environmental. 2012. 113. Р. 107—115.

3. McGinnis B.D., Adams V.D., Middlebrooks E.J. Evaluation of methylene blue and riboflavin for the photosensitized degradation of ethylene glycol. Environ. Int. 1999. 25. Р. 953—959.

4. Шарапова А.В. Очистка гликольсодержащих технологических жидкостей на цеолитах Химическая технология и биотехнология новых материалов и продуктов. IV Между- нар. конф. Российского химического общества им. Д.И. Менделеева. Тез. докл. В 2 т. М., РХТУ им Д.И. Менделеева, ИФХЭ им. А.Н. Фрумкина РАН, 2012. Т. 2. С. 188—189.

5. Kang Qi, Zhengwen Li, Chen Zhang, Xuejun Tan, Chunli Wan, Xiang Liu, Li Wang, Duu-Jong Lee. Biodegradation of real industrial wastewater containing ethylene glycol by using aerobic granular sludge in a continuous-flow reactor: Performance and resistance mechanism. Biochemical Engineering Journal. 2020. 161. 107711.

6. Бутырская Е.В., Белякова Н.В., Шапошник В.А., Рожкова М.В., Селеменев В.Ф. Выделение этиленгликоля из его водно-солевых растворов. Сорбционные и хромато-графические процессы. 2008. Т. 8. Вып. 6. 956—963.

7. Aleksander Orecki, Maria Tomaszewska, Krzysztof Karakulski, Antoni Waldemar Morawski. Separation of ethylene glycol from model wastewater by nanofiltration. Desalination. 2006. 200. Р. 358—360.

8. Воронова Г.А. Окисление этиленгликоля в глиоксаль на нанесенных серебряных катализаторах. Дисс. … канд. хим. наук. 02.00.04. Томск, 2000. 182 с.

9. Hassani A.H., Borghei S.M., Samadyar H., Mirbagheri S.A., Javid A.H. Treatment of Waste Water Containing Ethylene Glycol using Ozonation: Kinetic and Performance StudyBull. Env. Pharmacol. Life Sci. 2013. Vol 2 (9). Р. 78—82.

10. Dietrick McGinnis B., Dean Adams V., Joe Middlebrooks E. Degradation of ethylene glycol using Fenton's reagent and UV. Chemosphere. 2001. 45. Р. 101—108.

11. Методические рекомендации по расчёту количества и качества принимаемых сточных вод и загрязняющих веществ в системы канализации населённых пунктов. Методические рекомендации утверждены Приказом Госстроя России от 06.04.01 № 75.

12. Rajeshwar K., Ibanez J.G. Environmental electrochemistry: Fundamentals and applications in pollution sensors and abatement. 1997, Academic Press.

13. Johnson D.C., Feng J., Houk L.L. Direct electrochemical degradation of organic wastes in aqueous media Electrochim. Acta. 2000. Vol. 46. № 2—3. P. 323—330.

14. Simond O., Schaller V., Comninellis Ch. Theoretical model for the anodic oxidation of organics on metal oxide electrodes. Electrochim. Acta. 1997. 42. Р. 2009—2012.

15. Marselli B., Garcia-Gomez J., Michaud P.A., Rodrigo M.A., Comninellis Ch. Electrogeneration of Hydroxyl Radicals on Boron-Doped Diamond Electrodes. J. Electrochem. Soc. 2003. 150. D79—D83.

16. Parsons S.A., Williams M. Advanced Oxidation Processes for Water and Wastewater Treatment IWA Publishing, London (UK), 2004.

17. Panizza M., Cerisola G. Electrochemical processes for the treatment of organic pollutants. New York, Nova Science, 2006.

18. Плесков Ю.В. Электрохимия алмаза. Электрохимия. 2002. № 38. С. 1411—1422.

19. Торшин В.Б., Поворов А.А., Павлова В.Ф., Ащеулова И.И., Начева И.И., Селиванова Н.В. Анод для выделения кислорода и способ его изготовления. Патент РФ № 2577402. Опубл. 20.03.2016. Бюл. № 8.

20. Dirany A., Sirés I., Oturan N., Oturan M.A. Electrochemical abatement of the antibiotic sulfamethoxazole from water. Chemosphere. 2010. Iss. 81. Р. 594—602.

21. Comninellis C. Electrocatalysis in the electrochemical conversion combustion of organic pollutants for waste water treatment. Electrochim. Acta. 1994. 39. Р. 1857—1862.

22. Rabaaoui N., Moussaoui Y., Allagui M.S., Ahmed B., Elaloui E. Anodic oxidation of nitrobenzene on BDD electrode: Variable effects and mechanisms of degradation. Sep. Purif. Technol. 2013. 107. Р. 318—323.

23. Chen X., Chen G. Anodic oxidation of Orange II on Ti BDD electrode: Variable effects. Separation and Purification Technology. 2006. 48. Р. 45—49.

24. Le Xin, Zhiyong Zhang, Ji Qi, David Chadderdon, Wenzhen L. Electrocatalytic oxidation of ethylene glycol (EG) on supported Pt and Au catalysts in alkaline media: Reaction pathway investigation in three-electrode cell and fuel cell reactors. Applied Catalysis B: Environmental. 2012. 125. Р. 85—94.

25. Matsuoka K., Iriyama Y., Abe T., Matsuoka M., Ogumi Z. Electro-oxidation of methanol and ethylene glycol on platinum in alkaline solution: Poisoning effects and product analysis. Electrochim. Acta. 2005. 51. Р. 1085—1090.

26. Pradip Saha, Jiamin Wang, Yinong Zhou, Livio Carlucci, Adriaan W. Jeremiasse, Huub H.M. Rijnaarts, Harry Bruning. Effect of electrolyte composition on electrochemical oxidation: Active sulfate formation, benzotriazole degradation, and chlorinated by-products distribution. Environmental Research. 2022. 211. 113057. Р. 1—9.

27. Fernanda L. Souza, Jose M. Aquino, Kallyni Irikura, Douglas W. Miwa, Manuel A. Rodrigo, Artur J. Motheo. Electrochemical degradation of the dimethyl phthalate ester on a fluoride-doped Ti b-PbO2 anode. Chemosphere. 2014. 109. Р. 187—194.

28. Cañizares P., Lobato J., Paz R., Rodrigo M.A., Sáez C. Electrochemical oxidation of phenolic wastes with boron-doped diamond anodes. Water Research, 2005, 39, Р. 2687—2703.

29. Stéphane Fierro, Yuki Honda. Influence of Supporting Electrolyte on the Electrochemical Oxidation of Formic Acid on Boron-Doped Diamond Electrodes.Bulletin of the Chemical Society of Japan. 2013. 86. 6. Р. 749—754.

30. Barrera-Díaz C., Cañizares P., Fernández F.J., Natividad R., Rodrigo M.A. Electrochemical Advanced Oxidation Processes: An Overview of the Current Applications to Actual Industrial EffluentsJ. Mex. Chem. Soc., 2014, 58,3, Р. 256—275.


Review

For citations:


Torshin V., Povorov A., Krotova M., Yakusheva A., Motygina A., Protasova N. Electrochemical Oxidation of Ethylene Glycol in Aqueous Media Using Lead Dioxide Titanium Anode. Ecology and Industry of Russia. 2024;28(5):25-33. (In Russ.) https://doi.org/10.18412/1816-0395-2024-5-25-33

Views: 349


ISSN 1816-0395 (Print)
ISSN 2413-6042 (Online)