Preview

Ecology and Industry of Russia

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

The Influence of Freezing-thawing on the Properties of Sludge from Water Treatment Facilities and the Prospects for its Disposal

https://doi.org/10.18412/1816-0395-2024-4-27-33

Abstract

It has been shown that the freezing-thawing method allows a sharp increase in the water-yielding capacity of water treatment sludge (WTS sludge) and leads to an increase in the median particle size of the dispersed phase of sludge. The distribution of bound water types in WTP sludge was studied using thermogravimetry (TG), differential thermal thermogravimetry (DTG), differential scanning calorimetry (DSC) and mass spectrometry of gaseous thermolysis products (MS). It has been established that the release of water and carbon dioxide is completely completed at a temperature of 600°C. The specific surface area of the solid phase of WTP sludge before and after freezing-thawing was determined. The pore size distribution was studied. The BET isotherm of WTP sludge corresponds to mesoporous sorbents.

About the Authors

M.Yu. Belkanova
South Ural State University (National Research University)
Russian Federation

Cand. Sci. (Chem.), Associate Professor



V.V. Avdin
South Ural State University (National Research University)
Russian Federation

Dr. Sci. (Chem), Head of Department



D.M. Galimov
South Ural State University (National Research University)
Russian Federation

Research Scientist



References

1. Babatunde A.O., Zhao Y.Q. Constructive approaches toward water treatment works sludge management. An international review of beneficial reuses. Crit. Rev. Environ. Sci. Technol. 2007. Vol. 37 (2). P. 129—164.

2. Печенюк С.И., Семушина Ю.П. Сорбция ионов на поверхности оксигидроксидов металлов. Монография. Отв. ред. В.В. Авдин. Челябинск, Издательский центр ЮУрГУ, 2021. 246 с.

3. Kizinievič O.R. Utilisation of Sludge Waste from Water Treatment for Ceramic Products. Construction and Building Materials. 2013. Vol. 41. P. 464—473.

4. Orlov A., Belkanova M., Vatin N. Structural ceramics modified by water treatment plant sludge. Materials. 2020. Vol. 13 (22). P. 1—11. [Electronic Resourse] URL: https://doi.org/10.3390/ma13225293 (access date 10.10.2023).

5. Godoy L. G.G.D., Rohden A.B., Garcez M.R., Da Dalt S., Bonan Gomes L. Production of supplementary cementitious material as a sustainable management strategy for water treatment sludge waste. Case Studies in Construction Materials. 2020. Vol. 12.e00329. [Electronic Resourse]. URL: https://doi:10.1016/j.cscm.2020.e00329 (access date 10.10.2023).

6. Shamaki M., Adu-Amankwah S., Black L. Reuse of UK alum water treatment sludge in cement-based materials. Construction and Building Materials. 2021. Vol. 275. 122047. [Electronic Resourse]. URL: https://doi:10.1016/j.conbuildmat.2020.12204 (access date 10.10.2023).

7. Самонин В., Спиридонова Е., Зотов А., Подвязников М., Гарабаджиу А. Адсорбенты из неорганических техногенных отходов. Экология и промышленность России. 2021. Т. 25. № 12. C. 15—23.

8. Wu Y., Wang Y., Zhang X., Zhang Y., Chen G., Zhang X., Ji J. Dehydration effect of freeze-thaw on sludge: Temperature spatio-temporal distribution and multi-scale evaluation. Environmental Research. 2022. Vol. 214 (53). 114161. [Electronic Resourse]. URL: https://doi:10.1016/j.envres.2022.114161 (access date 10.10.2023).

9. Соколов Л.И., Тянин А.Н. Исследование обработки биологических осадков криогенным методом. Экология и промышленность России. 2020. Т. 24. № 10. С. 20—25.

10. Vesilind P.A., Martel C.J. Freezing of water and wastewater sludges. J. Environ. Eng. 1990. Vol. 116. P. 854—862.

11. De Carvalho Gomes S., Zhou J.L., Li W., Qu F. Recycling of raw water treatment sludge in cementitious composites: effects on heat evolution, compressive strength and microstructure, Resources, Conservation and Recycling. 2020. Vol. 161. 104970 ISSN 0921-3449 [Electronic Resourse]. URL: https://www.sciencedirect.com/science/article/pii/S0921344920302883 (access date 10.10.2023).

12. Abo-El-Enein S.A., Shebl A., Abo El-Dahab S.A. Drinking water treatment sludge as an efficient adsorbent for heavy metals removal. Appl. Clay Sci. 2017. 146. P. 343—349. [Electronic Resourse]. URL: https://doi.org/10.1016/j.clay.2017.06.027 (access date 10.10.2023).

13. Brogowski Z., Renman G. Characterization of Opoka as a Basis for its Use in Wastewater Treatment. Polish Journal of Environmental Studies. 2004. Vol. 13(1). P. 15—20.

14. Махова Т.М., Доронин С.Ю. Глауконит как сорбент 4-нитрофенола. Известия Саратовского университета. Новая серия. Серия: Химия. Биология. Экология. 2021. Т. 21. Вып. 2. С. 152—158.


Review

For citations:


Belkanova M., Avdin V., Galimov D. The Influence of Freezing-thawing on the Properties of Sludge from Water Treatment Facilities and the Prospects for its Disposal. Ecology and Industry of Russia. 2024;28(4):27-33. (In Russ.) https://doi.org/10.18412/1816-0395-2024-4-27-33

Views: 224


ISSN 1816-0395 (Print)
ISSN 2413-6042 (Online)