

Increasing the Efficiency of Wastewater Treatment from Galvanic Production Using Titanium-containing Coagulants and Membrane Treatment
https://doi.org/10.18412/1816-0395-2024-3-27-31
Abstract
It has been stated that the use of complex titanium-containing agents can significantly increase the efficiency of wastewater treatment and achieve a reduction in residual concentrations of heavy metal compounds down to standard values. For further separation of coagulated sludge from purified water, it is proposed to use filtration methods with ceramic tubular filters. A significant increase in the filtration rate of titanium-containing coagulation sludge has been confirmed, leading to an increase in the productivity of treatment equipment by 20–30 %. It is recommended for purification of acid-base and chromium-containing wastewater to combine the process of coagulation of impurities by treating the wastewater with a complex titanium-containing coagulant, followed by filtering the resulting sludge using special ceramic tubular filters.
About the Authors
E.N. KuzinRussian Federation
Cand. Sci. (Eng.), Associate Professor
Yu.M. Averina
Russian Federation
Cand. Sci. (Eng.), Head of Department
A.Yu. Kurbatov
Russian Federation
Cand. Sci. (Eng.), Associate Professor
A.G. Cherednichenko
Russian Federation
Dr. Sci. (Eng.), Head of Department
References
1. Shah M.P., Bera S.P., Töre G.Y. (Eds.). Advanced Oxidation Processes for Wastewater Treatment: An Innovative Approach (1st ed.). CRC Press. 2022. 298 p. https://doi.org/10.1201/9781003165958.
2. Simonič M. Reverse Osmosis Treatment of Wastewater for Reuse as Process Water A Case Study. Membranes. 2021. № 11. Р. 976. https://doi.org/10.3390/membranes11120976.
3. Миташова Н.И., Грибач Е.А., Назарова Е.А., Волков В.А., Смирнова В.А. Очистка сточных вод, содержащих ПАВ, и их повторное использование. Известия МГТУ "МАМИ". 2013. Т. 7. №3. C. 48—51. doi: 10.17816/2074-0530-67990.
4. Barrera-Díaz C.E., Lugo-Lugo V., Bilyeu B. A review of chemical, electrochemical and biological methods for aqueous Cr(VI) reduction. J. Hazard. Mater. 2012. № 223—224. Р. 1—12.
5. Климова О.В., Филатова Е.Г., Дударев В.И., Соболева А.А. Оптимизация электрокоагуляционной технологии удаления ионов тяжелых металлов из сточных вод. Вода: химия и экология. 2014. № 2. С. 36—40.
6. Heidman I., Calmano W. Removal of Zn (II), Cu (II), Ni (II), Ag (I) and Сr (VI) present in aqueous solution by aluminum electrocoagulation. J. Hazard. Mater. 2008. V. 152. Р. 934—941.
7. Виноградов С.С. Экологически безопасное гальваническое производство. Изд. 2-е, перераб. и доп. М., Глобус. 2002. 352 с.
8. Kolesnikov A.V., Pyae A., Davydkova T.V., Kolesnikov V.A. Establishment of regularities of electroflotation extraction of non-ferrous metal (Cu, Ni, Zn, Co, Fe) hydroxides from wastewater of various compositions in the presence of industrial surfactants. Non-ferrous Metals. 2021. № 1. P. 3—9.
9. Vemula Madhavi, Ambavaram Vijay, Bhaskar Reddy, Kalluru Gangadhara Reddy, Gajulapalle Madhavi. An overview on research trends in remediation of chromium. Research Journal of Recent Sciences. 2013. V. 2 (1). Р. 71—83.
10. Gheju M., Balcu I. Removal of chromium from Cr(VI) polluted wastewaters by reduction with scrap iron and subsequent precipitation of resulted cations. J. Hazardous Mater. 2011. V. 196. Р. 131—138.
11. Prasad P., Das C., Golder A. Reduction of Cr(VI) to Cr(III) and removal of total chromium from wastewater using scrap iron in the form of zerovalent iron (ZVI): Batch and column studies. Can. J. Chem. Eng. 2011. V. 89. № 6. Р. 1575—1582.
12. Pugazhenthi G., Sachan S., Kishore N., Kumar A. Separation of chromium (VI) using modified ultrafiltration charged carbon membrane and its mathematical modeling. Journal of Membrane Science. 2005. V. 254. № 1—2. Р. 229—239.
13. Heidman I., Calmano W. Removal of Zn (II), Cu (II), Ni (II), Ag (I) and Сr (VI) present in aqueous solution byaluminum electrocoagulation. J. Hazard. Mater. 2008. V. 152. Р 934—941. DOI: 10.1016/j.jhazmat.2007.07.068.
14. Kuzin E.N., Krutchinina N.E., Chernyshev P.I., Vizen N.S. Synthesis of Titanium Trichloride. Inorganic Materials. 2019. Vol. 56. Iss. 5. P. 507—511 (2020). https://doi.org/10.1134/S002016852005009X
15. Kuzin E.N., Krutchinina N.E. Hydrolysis and Chemical Activity of Aqueous TiCl4 Solutions. Inorganic Materials. 2019. Vol. 55. № 8. P. 885—889. https://doi.org/10.1134/S0020168519080065.
16. Кузин Е.Н. Применение метода атомно-эмиссионной спектроскопии с СВЧ (магнитной) плазмой в процессах идентификации химического состава отходов сталеплавильного производства. Черные металлы. 2022. № 10. С. 79—82. doi: 10.17580/chm.2022.10.13.
17. Water Quality Determination of the Chemical Oxygen Demand Index (ST-COD) Small-scale Sealed-tube Method. Pub. L. ISO 15705:2002.
18. Gan Y., Li J., Zhang L., Wu B., Huang W., Li H., Zhang S. Potential of titanium coagulants for water and wastewater treatment: Current status and future perspectives. Chemical Engineering Journal. 2021. Р. 126837. doi:10.1016/j.cej.2020.126837.
19. Maciej Thomas, Joanna Bąk, Jadwiga Królikowska. Efficiency of titanium salts as alternative coagulants in water and wastewater treatment: Short review. Desalination and Water Treatment. 2020. V. 208. Р. 261—272. doi:10.5004/dwt.2020.26689.
20. Hussaina S., Awada J., Sarkarc B., Chowa C.W.K., Duana J., Leeuwena J.V. Coagulation of dissolved organic matter in surface water by novel titanium (III) chloride: Mechanistic surface chemical and spectroscopic characterization. Separation and Purification Technology. 2019. V. 213. Р. 213—223. doi.org/10.1016/j.seppur.2018.12.038.
21. Мамченко А.В., Герасименко Н.Г., Пахарь Т.А. Влияние температуры на эффективность процесса коагуляции титанилсульфата и сульфата алюминия. Химия и технология воды. 2011. Т. 33. № 5. С. 530—542.
22. Гетманцев С.В., Нечаев И.А., Гандурина Л.В. Очистка производственных сточных вод коагулянтами и флокулянтами. М., "АСВ", 2008. 271 с.
23. Шабанова Н.А., Попов В.В., Саркисов П.Д. Химия и технология нанодисперсных оксидов. Учебное пособие. М., ИКЦ "Академкнига", 2007. 309 с.
24. Kuzin E., Averina Y., Kurbatov A., Kruchinina N., Boldyrev V. Titanium-Containing Coagulants in Wastewater Treatment Processes in the Alcohol Industry. Processes. 2022. 10. № 440. https://doi.org/10.3390/pr10030440.
Review
For citations:
Kuzin E., Averina Yu., Kurbatov A., Cherednichenko A. Increasing the Efficiency of Wastewater Treatment from Galvanic Production Using Titanium-containing Coagulants and Membrane Treatment. Ecology and Industry of Russia. 2024;28(3):27-31. (In Russ.) https://doi.org/10.18412/1816-0395-2024-3-27-31