

Information Management for Remote Monitoring of the Ecology of Disturbed Lands During the Development of Deposits of Chrysotile-asbestos and Fluxing Limestone
https://doi.org/10.18412/1816-0395-2024-1-46-51
Abstract
Based on the results of remote monitoring, the current state of mining operations in quarries for the extraction of chrysotile-asbestos and metallurgical fluxes used in various sectors of the Russian national economy was studied. The production capacity of each quarry in terms of rock mass at the studied deposits and the total production potential of the quarries for the extraction of minerals, estimated at at least 95 million tons per year, have been determined. The environmental indicators of disturbed lands during the development of deposits of chrysotile-asbestos and metallurgical fluxes are presented.
About the Authors
I.V. ZenkovRussian Federation
Dr. Sci. (Eng.), Deputy Director for Research
Chin Le Hung
Viet Nam
Cand. Sci. (Eng.), Associate Professor
E.A. Kustikova
Russian Federation
Engineer-elocogist
L.V. Bakeyeva
Russian Federation
Cand. Sci. (Economics), Associate Professor
Yu.P. Yuronen
Russian Federation
Cand. Sci. (Eng.), Associate Professor
Zh.V. Mironova
Russian Federation
Cand. Sci. (Eng.), Associate Professor
E.I. Gerasimova
Russian Federation
Senior Lecturer
P.L. Pavlova
Russian Federation
Cand. Sci. (Eng.), Senior lecturer
Yu.A. Maglinets
Russian Federation
Cand. Sci. (Eng.), Professor
S.N. Skornyakova
Russian Federation
Senior Lecturer
References
1. Озарян Ю.А., Бубнова М.Б., Усиков В.И. Методика дистанционного мониторинга природно-технических систем (в условиях горнопромышленных территорий юга Дальнего Востока России). Горный журнал. 2020. № 2. С 84—87.
2. Ермаков Д.М., Деменев А.Д., Мещерякова О.Ю., Березина О.А. Особенности разработки регионального водного индекса для мониторинга воздействия изливов кислых шахтных вод на речные системы. Современные проблемы дистанционного зондирования Земли из космоса. 2021. Т. 18. №6. С. 222—237.
3. Крутских Н.В. Оценка трансформации природной среды в зоне воздействия горнодобывающих предприятий с использованием данных дистанционного зондирования земли. Горный журнал. 2019. № 3. С. 88—93.
4. Корниенко С.Г. Характеристика антропогенных трансформаций ландшафтов в районе Бованенковского месторождения по данным спутников Landsat. Современные проблемы дистанционного зондирования Земли из космоса. 2022. Т. 19. № 2. С. 106—129.
5. Пашкевич М.А., Петрова Т.А., Рудзиш Э. Оценка потенциальной возможности использования лигнин-шламов для лесохозяйственной рекультивации нарушенных земель. Записки Горного института. 2019. Т. 235. С. 106—112. https://doi.org/10.31897/PMI.2019.1.106.
6. Chen Q., Zhao Z., Zhou J., Zeng M., Xia J., Sun T., Zhao X. New Insights into the Pulang Porphyry Copper Deposit in Southwest China: Indication of Alteration Minerals Detected Using ASTER and WorldView-3 Data. Remote Sens. 2021. Vol. 13. 2798. https://doi.org/10.3390/rs13142798.
7. Lobo A., Garcia E., Barroso G., Martí D., Fernandez-Turiel J.-L., Ibáсez- Insa J. Machine Learning for Mineral Identification and Ore Estimation from Hyperspectral Imagery in Tin-Tungsten Deposits: Simulation under Indoor Conditions. Remote Sens. 2021. Vol. 13(16). 3258. doi.org/10.3390/rs13163258.
8. Bedini E. Application of WorldView-3 imagery and ASTER TIR data to map alteration minerals associated with the Rodalquilar gold deposits, southeast Spain. Advances in Space Research. 2019. Vol. 63. Iss. 10. P. 3346—3357.
9. Beiranvand Pour A., S. Park T-Y., Park Y., Hong J.K. et al. Landsat-8, Advanced Spaceborne Thermal Emission and Reflection Radiometer, and World- View-3 Multispectral Satellite Imagery for Prospecting Copper-Gold Mineralization in the Northeastern Inglefield Mobile Belt (IMB), Northwest Greenland. Remote Sens. 2019. Vol. 11(20). 2430. doi.org/10.3390/rs11202430.
10. Qin Y., Zhang X., Zhao Z. Li Z., Yang C., Huang Q. Coupling Relationship Analysis of Gold Content Using Gaofen-5 (GF-5) Satellite Hyperspectral Remote Sensing Data: A Potential Method in Chahuazhai Gold Mining Area, Qiubei County, SW China. Remote Sens. 2022. Vol. 14.109. doi.org/10.3390/rs14010109.
11. Booysen R., Lorenz S., Thiele S. T. et al. Accurate hyperspectral imaging of mineralised outcrops: An example from lithium-bearing pegmatites at Uis, Namibia. Remote Sensing of Environment. 2022. Vol. 269. 112790. doi.org/10.1016/j.rse.2021.112790.
12. Singh N., Chatterjee R.S., Kumar Dh., Paningrahi D.C., Mujawdiya R. Retrieval of precise land surface temperature from ASTER night-time thermal infrared data by split window algorithm for improved coal fire detection in Jharia Coalfield, India. Geocarto International. 2020. Vol. 37. Iss. 3. P. 926—943. DOI: 10.1080/10106049.2020.1753820.
13. https://www.google.com.earth.
Review
For citations:
Zenkov I., Le Hung Ch., Kustikova E., Bakeyeva L., Yuronen Yu., Mironova Zh., Gerasimova E., Pavlova P., Maglinets Yu., Skornyakova S. Information Management for Remote Monitoring of the Ecology of Disturbed Lands During the Development of Deposits of Chrysotile-asbestos and Fluxing Limestone. Ecology and Industry of Russia. 2024;28(1):46-51. (In Russ.) https://doi.org/10.18412/1816-0395-2024-1-46-51