Preview

Ecology and Industry of Russia

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Comprehensive Chemical Cleaning of Flue Gases of Thermal Waste Treatment Plants Using a Catalytic Filter

https://doi.org/10.18412/1816-0395-2023-7-4-10

Abstract

The efficiency of integrated gas emissions treatment in thermal waste treatment units from dust particles and fossil sour traces of SO2, HCl and HF, as well as volatile organic compounds (VOCs) and dioxins at 300–400 °C of the gas mixture with a ceramic gas filter with aluminosilicate fibers added with catalytic MgCr2O4. The efficiency of sorption purification of tail gases from SO2, HCl and HF during the test period was 79–90 %, which depended on the supply of slaked lime to the catalytic filter to prevent catalyst deactivation. Thermal mode of chemical refining (300–400 °C) provided effective catalytic purification from VOCs, CO, and dioxins in combination with the chemisorption recapture of catalytic poisons and dust, preventing neither sorbent degradation nor damage to the catalyst.

About the Authors

B.L. Krasny
LLC Scientific and Technical Center "Bakor"
Russian Federation

Dr. Sci. (Eng.), General Director



M.N. Korolev
LLC Scientific and Technical Center "Bakor"
Russian Federation

Deputy General Director for innovation and technological development



D.A. Serebryansky
LLC Scientific and Technical Center "Bakor"
Russian Federation

Cand. Sci. (Eng.), Head of Laboratory



A.A. Slastilov
LLC Scientific and Technical Center "Bakor"
Russian Federation

Junior Research Fellow



S.R. Khayrulin
Federal Research CenterBoreskov Institute of Catalysis SB RAS
Russian Federation

Cand. Sci. (Chem.), Senior Research Fellow



S.A. Yashnik
Federal Research CenterBoreskov Institute of Catalysis SB RAS
Russian Federation

Cand. Sci.(Chem.), Senior Research Fellow



Z.R. Ismagilov
Federal Research CenterBoreskov Institute of Catalysis SB RAS; The Federal Research Center of Coal and Coal-Chemistry of Siberian Branch of the Russian Academy of Sciences
Russian Federation

Academician RAS, Dr. Sci. (Chem.), Chief Researcher, Director



References

1. Straczewski G., Koutera K., Gerhards U., Garbev K., Leibold H. Development of catalytic ceramic filter candles for tar conversion. Fuel Communications. 2021. V. 7. P. 100021. https://doi.org/10.1016/j.jfueco.2021.100021.

2. Neuwahl F., Cusano G., Benavides J. G., Holbrook S., Roudier S. Best Available Techniques (BAT) Reference Document for Waste Incineration, European Union. Joint Research Centre. 2019. 764 p. doi:10.2760/761437.

3. Exposure and Human Health Reassessment of 2,3,7,8-Tetrachlorodibenzo-P-Dioxin (TCDD) and Related Compounds National Academy Sciences (External Review Draft). U.S. Environmental Protection Agency, Washington, D.C. 2004. Part 1. V. 1. 658 p.

4. Bo X., Guo J., Wan R., Jia Y., Yang Z., Lu Y., Wei M. Characteristics, correlations and health risks of PCDD/Fs and heavy metals in surface soil near municipal solid waste incineration plants in Southwest China. Env. Pollution. 2022. V. 298. P. 118816. https://doi.org/10.1016/j.envpol.2022.118816.

5. Lin X., Ma Y., Chen Zh., Li X., Lu Sh., Yan J. Effect of different air pollution control devices on the gas/solidphase distribution of PCDD/F in a full-scale municipal solid waste incinerator. Env. Pollution. 2020. V. 265 P. 114888. https://doi.org/10.1016/j.envpol.2020.114888.

6. Zhang J., Zhang Sh., Liu B. Degradation technologies and mechanisms of dioxins in municipal solid waste incineration fly ash: A review. J. of Clean. Prod. 2020. V. 250 P. 119507. https://doi.org/10.1016/j.jclepro.2019.119507.

7. Gong Y., Zou D., Zhong Zh., Xing W. High-performance mullite fibrous ceramic filter enhanced by composite sintering aids for dust-laden gas filtration. Sep. Purif. Technol. 2022. V. 292. P. 120967. DOI:10.1016/j.seppur.2022.120967.

8. Miao L., Wu X., Ji Zh., Zhao Zh., Chang Ch., Liu Zh., Chen F. Microwave-assisted preparation of porous fibrous ceramic-based catalytic filter elements for the simultaneous removal of NOx and dust from high-temperature gases. Sep. Purif. Technol. 2021. V. 278. P. 119549. https://doi.org/10.1016/j.seppur.2021.119549.

9. Garea A., Marqués J.A., Irabien A., Kavouras A., Krammer G. Sorbent behavior in urban waste incineration: acid gas removal and thermogravimetric characterization. Thermochimica Acta, 2003. V. 397. № 1—2. P. 227—236. https://doi.org/10.1016/S0040-6031(02)00333-7.

10. Nacken M., Heidenreich S., Hackel M., Schaub G. Catalytic activation of ceramic filter elements for combined particle separation, NOx removal and VOC total oxidation. Appl. Catal. B. 2007. V. 70. P. 370—376. DOI:10.1016/J.APCATB.2006.02.030.

11. Sizova A., Rodimov O., Galganova A., Lemeshev D., Bernt D., Krasny B., Ikonnikov K. Influence of drying process on the aluminosilicate fiber hot gases filter element properties. Ceram. Int. 2022. V. 48. № 19. Part B. P. 29165—29174. https://doi.org/10.1016/j.ceramint.2022.05.092.

12. Revised Draft Guidelines On Best Available Techniques And Provisional Guidance On Best Environmental Practices Relevant To Article 5 And Annex C Of The Stockholm Convention On Persistent Organic Pollutants, Geneva, Switzerland. 2006. 431 p.


Review

For citations:


Krasny B., Korolev M., Serebryansky D., Slastilov A., Khayrulin S., Yashnik S., Ismagilov Z. Comprehensive Chemical Cleaning of Flue Gases of Thermal Waste Treatment Plants Using a Catalytic Filter. Ecology and Industry of Russia. 2023;27(7):4-10. (In Russ.) https://doi.org/10.18412/1816-0395-2023-7-4-10

Views: 359


ISSN 1816-0395 (Print)
ISSN 2413-6042 (Online)