

Effect of Physico-chemical Activation on Sorption Activity of Bio-coal from Pine Sawdust
https://doi.org/10.18412/1816-0395-2023-6-67-71
Abstract
Pine sawdust, 0.5–1 mm in size, was made carbonized. The resulting biochar was activated. This activated KOH biochar was confirmed to be a better methylene blue dye sorbent than the original charcoal. The conclusion was made about the possibility of using the study results in the processing of timber industry waste into carbon sorbents for water treatment systems and ensuring environmental safety of production sites.
About the Authors
E.V. TominaRussian Federation
Dr. Sci. (Chem.), Head of Department
N.A. Khodosova
Russian Federation
Cand. Sci. (Chem.), Associate Professor
V.E. Manukovskaya
Russian Federation
Student
K.V. Zhuzhukin
Russian Federation
Post-graduate Student
References
1. Ding Y., Liu Y., Liu S., Li Z., Tan X., Huang X., Zeng G., Zhou L., Zheng B. Biochar to improve soil fertility. A review. Agronomy for Sustainable Development. 2016. Vol. 36. Р. 36. https://doi.org/10.1007/s13593-016-0372-z.
2. Hassan M., Liu Y., Naidu R., Parikh S.J., Du J., Qi F., Willett I.R. Influences offeed stock sources and pyrolysis temperature on the properties of biochar and functionality as adsorbents: A meta-analysis. Science of The Total Environment. 2022. Vol. 744. P. 140714. https://doi.org/10.1016/j.scitotenv.2020.140714.
3. Sri Shalini S., Palanivelu K., Ramachandran A., Raghavan V. Biochar from biomass waste as a renewable carbon material for climate change mitigation in reducing greenhouse gas emissions. A review. Biomass Conversion and Biorefinery. 2020. Vol. 11. P. 2247—2267. https://doi.org/10.1007/s13399-020-00604-5.
4. Jiang C., Ma J., Corre G., Jain S.L., Irvine J.T.S. Challenges in developing direct carbon fuel cells. Chemical Society Reviews. 2017. Vol. 46. P. 2889—2912. https://doi.org/10.1039/c6cs00784h.
5. Cuong D.V., Matsagar B.M., LeeM., Hossain M.S.A., Yamauch Y.i, Vithanage M., Ok S.B., Kevin Y. S, W.C.-W., C.-H. Hou. A critical review on biochar based engineered hierarchical porous carbon for capacitive charge storage. Renewable and Sustainable Energy Reviews. 2021. Vol. 145. P. 111029. https://doi.org/10.1016/j.rser.2021.111029.
6. Senthil C., Lee C.W. Biomass-derived biochar materials as sustainable energy sources for electrochemical energy storage devices. Renewable and Sustainable Energy Reviews. 2021. Vol. 137, P. 110464. https://doi.org/10.1016/j.rser.2020.110464.
7. Спицын А.А., Минич М.И., Пономарев Д.А., Богданович Н.И. Сравнение адсорбционной способности углеродных сорбентов из различных растительных предшественников. Химия растительного сырья. 2021. № 4. С. 345—350. https://doi.org/10.14258/jcprm.2021049250.
8. Ahmad Z., Gao B., Mosa A., Yu H., Yin X., Bashir A., Ghoveisi H., Wang S. Removal of Cu (II), Cd (II) and Pb (II) ions from aqueous solutions by biochars derived from potassiumrich biomass. Journal of Cleaner Production. 2018. Vol. 180. P. 437—449. https://doi.org/10.1016/j.jclepro.2018.01.133.
9. ГОСТ 4453-74. Уголь активный осветляющий древесный порошкообразный. Технические условия. Введ. 01.01.76. М., Издательство стандартов, 1993. http://gost.gtsever.ru/Data/414/41448.pdf.
10. Xie Ya., Wang L., Li H., Westholm L.J., Carvalho L., Thorin E., Yu Zh., Yu X., Skreiberg Ø. A critical review on production, modification and utilization of biochar. Journal of Analytical and Applied Pyrolysis. 2022. Vol. 161. 105405. https://doi.org/10.1016/j.jaap.2021.105405.
11. Томина Е.В., Ходосова Н.А., Лукин А.Н. Сорбционно-поверхностные характеристики модифицированного биоугля, полученного при карбонизации опилок сосны. Сорбционные и хроматографические процессы. 2022. Т. 22. № 4. С. 442—452. https://doi.org/10.17308/sorpchrom.2022.22/10600.
12. Zawadzki J. Infrared Spectroscopy in Surface Chemistry of Carbons. In: Thrower, P.A., Ed., Chemistry and Physics of Carbon. Vol. 21. N.Y. Marcel Dekker, 1989. P. 147—369.
13. European Biochar Certificate – Guidelines for a Sustainable Production of Biochar. European Biochar Foundation (EBC), Arbaz, Switzerland 2012. [Электронный ресурс]. URL: http://www.european-biochar.org/en/download.10.13140/RG.2.1.4658.704322 (дата обращения 10.09.2022).
14. Essandoh M., Kunwar B., Pittman C.U., Mohan D., Mlsna T. Sorptive removal of salicylic acid and ibuprofen from aqueous solutions using pine wood fast pyrolysis biochar. Chemical Engineering Journal. 2015. Vol. 265. P. 219—227. https://doi.org/10.1016/j.cej.2014.12.006.
15. Хмелев В.Н., Цыганок С.Н., Шакура В.А., Абраменко Д.С. Исследование процесса ультразвукового диспергирования на примере бурого угля и торфа. Южно-Сибирский научный вестник. 2018. № 4(24). С. 122—127. EDN YSZNIT.
Review
For citations:
Tomina E., Khodosova N., Manukovskaya V., Zhuzhukin K. Effect of Physico-chemical Activation on Sorption Activity of Bio-coal from Pine Sawdust. Ecology and Industry of Russia. 2023;27(6):67-71. (In Russ.) https://doi.org/10.18412/1816-0395-2023-6-67-71