Preview

Ecology and Industry of Russia

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Lidar Technology for Measuring Climate Impacting Active Gases for Carbon Polygons

https://doi.org/10.18412/1816-0395-2023-6-30-35

Abstract

The analysis of lidar technologies application for remote measurement of concentrations of climate impacting active gases was presented. The modelling of the lidar equation for measuring the concentration of carboxyl ring molecules was carried out using the lidar combined action of Raman scattering of light in the atmosphere at detection distances up to 100 m. It was confirmed that when probing the atmosphere with a lidar in combinational with laser radiation at a wavelength of 405 nm, the concentration of all studied molecules in the gas mixture was detected.

About the Authors

V.V. Dyachenko
Bauman Moscow State Technical University
Russian Federation

Dr. Sci. (Geography), Cand. Sci. (Agriculture), Professor



V.A. Devisilov
Bauman Moscow State Technical University
Russian Federation

Cand. Sci. (Eng.), Associate Professor



V.G. Shemanin
Bauman Moscow State Technical University
Russian Federation

Dr. Sci. (Phys.-Math.), Professor



References

1. Дьяченко В.В., Шеманин В.Г. Лазерные системы в экологическом мониторинге окружающей среды и контроле технологической деятельности предприятий. Экология и промышленность России. 2021. Т. 25. № 10. С. 36—42. DOI: 10.18412/1816-0395-2021-10-36-42.

2. Дьяченко В.В., Дьяченко Л.Г., Девисилов В.А. Науки о земле. Уч. Под ред. Девисилова В.А. М., НИЦ ИНФРА, 2019. 345 с.

3. Привалов В.Е., Фотиади А.Э., Шеманин В.Г. Лазеры и экологический мониторинг атмосферы. СПб., Лань, 2013. 288 с.

4. Kim D., Kang H., Ryu J.-Y., Jun S.-C., Yun S.-T., Choi S., Park. S., Yoon M., Lee H. Development of Raman lidar for remote sensing of CO2 leakage at an artificial carbon capture and storage site. Remote Sensing. 2018. Vol. 10. No.9. P. 1439. https://doi.org/10.3390/rs10091439.

5. Veselovskii I., Goloub P., Hu Q., Podvin T., Whiteman N.D., Korenskiy M., Landulfo E. Profiling of CH4 background mixing ratio in the lower troposphere with Raman lidar: A feasibility experiment. Atmospheric Measurement Techniques,2019. Vol. 12. No. 1. P. 119—128. https://doi.org/10.5194/amt-12-119-2019.

6. Choi I.Y., Baik S.H., Cha J.H., Kim J.H. A hydrogen gas concentration measurement method using the Raman lidar system. Measurement Science and Technology. 2019. V. 30. No 5. P. 055201. https://doi.org/10.1088/1361-6501/ab0260.

7. Choi I.Y., Baik S.H.; Choi Y.S. Remotely measuring the hydrogen gas by using portable Raman lidar system. OpticaApplicata. 2021. V. 51. No 1. P. 37—49. https://doi.org/10.37190/OA210103.

8. Somekawa T., Ichikawa Y., Ogita M., Sugimoto S., Chosrowjan H., Taniguchi S., Asahi I. Flash resonance Raman lidar for SO2 gas leak detection. Optics Communications. 2022. V. 513. P. 128083. https://doi.org/10.1016/j.optcom.2022.128083.

9. Tatarov B., Muller D. LITES: Rotational Raman spectra of air molecules measured by high-resolution-spectroscopy lidar. Optics Letters. 2021. V. 46. No 20. P. 5173—5176. https://doi.org/10.1364/OL.420070.

10. Huang Z., Nee J.-B., Chiang C.-W., Zhang S., Jin H., Wang W., Zhou T. Real-time observations of dust-cloud interactions based on polarization and Raman lidar measurements. Remote Sensing. 2018. V. 10. No 7. P. 1017. https://doi.org/10.3390/rs10071017.

11. Wang S., Ke J., Chen S., Zheng Z., Cheng C., Tong B., Liu J., Liu D., Chen W. Performance evaluation of space borne integrated path differential absorption lidar for carbon dioxide detection at 1572 nm. Remote Sensing. 2020. V. 12. P. 2570. https://doi.org/10.3390/rs12162570.

12. Privalov V.E., Shemanin V.G. Accuracy of lidar measurements of the concentration of hydrofluoride molecules in the atmospheric boundary layer. Measurement Techniques. 2020. V. 63. No 7. P. 543—548. DOI 10.1007/s11018-020-01821-0.

13. Привалов В.Е., Шеманин В.Г. Лидарное уравнение с учетом конечной ширины лазерной линии. Известия РАН. Серия Физическая. 2015. Т. 79. № 2. С.170—180.

14. Межерис Р. Лазерное дистанционное зондирование. М., Мир, 1987. 550 с.

15. Лазерный контроль атмосферы. Под. ред .Э.Д. Хинкли. М., Мир, 1979. 416 с.

16. Дьяченко В.В., Шеманин В.Г. Лидарный мониторинг парниковых газов в атмосфере. Лазеры. Измерения. Информация. 2022. Т. 2. № 4(8). С. 15—29. https://lasers-measurement-information.ru/ojs/index.php/laser/article/view/48.

17. Dyachenko V.V., Chartiy P.V., Shemanin V.G. Laser Systems for the Pollutants Control in the Oil and Gas Industry. IOP Conf. Series: Earth and Environmental Science. 2019. V. 272—032003. 6 p. doi:10.1088/1755-1315/272/3/032003.


Review

For citations:


Dyachenko V., Devisilov V., Shemanin V. Lidar Technology for Measuring Climate Impacting Active Gases for Carbon Polygons. Ecology and Industry of Russia. 2023;27(6):30-35. (In Russ.) https://doi.org/10.18412/1816-0395-2023-6-30-35

Views: 279


ISSN 1816-0395 (Print)
ISSN 2413-6042 (Online)