Preview

Ecology and Industry of Russia

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Optimization of Rh-containing Catalysts for Low-temperature Steam Reforming of Light Hydrocarbons

https://doi.org/10.18412/1816-0395-2023-6-17-23

Abstract

Rhodium-containing catalysts on various carriers (Ce0.75Zr0.25O2, Ce0.5Zr0.5O2, Ce0.4Zr0.5Y0.05La0.05O2, γ-Al2O3, TiO2) produced by various methods (sorption-hydrolytic precipitation and incipient wetness impregnation) and differing by mass content of rhodium (from 0.5 to 4 % by mass) were studied. The dependence of the catalytical efficiency of rhodium catalysts on composition, texture, and redox properties of the carrier was studied. The prospect of using associated petroleum gas at Russian deposits was confirmed.

About the Authors

A.S. Urlukov
Boreskov Institute of Catalysis SB RAS; Novosibirsk State University
Russian Federation

Junior Research Fellow



S.I. Uskov
Boreskov Institute of Catalysis SB RAS
Russian Federation

Cand. Sci. (Chem.), Research Scientist



D.I. Potemkin
Boreskov Institute of Catalysis SB RAS; Novosibirsk State University
Russian Federation

Cand. Sci. (Chem.), Senior Research Fellow



S.N. Berdyugin
Nikolaev Institute of Inorganic Chemistry SB RAS
Russian Federation

Research Scientist



V.N. Rogozhnikov
Boreskov Institute of Catalysis SB RAS
Russian Federation

Cand. Sci. (Chem.), Research Scientist



P.V. Snytnikov
Boreskov Institute of Catalysis SB RAS
Russian Federation

Dr. Sci. (Chem.), Head of the Centre National Technological Initiative "Hydrogen as the basis of a low-carbon economy"



References

1. Эдер Л.В., Проворная И.В., Филимонова И.В. Проблема рационального использования попутного нефтяного газа в России. География и природные ресурсы. 2019. № 1. С. 14—20.

2. Trimm D.L. Coke formation and minimisation during steam reforming reactions. Catalysis Today. 1997. Vol. 37. P. 233—238. https://doi.org/10.1016/S0920-5861(97)00014-X.

3. Урлуков А.С., Усков С.И., Потемкин Д.И., Снытников П.В. Каталитическая конверсия факельного газа на Rh катализаторах с последующей прямой монетизацией. Катализ в промышленности. 2022. Т. 22. № 4. С. 51—57.

4. Parthasarathi Beraa, M.S. Hegde. Noble metal ions in CeO2 and TiO2: Synthesis, structure and catalytic properties. RSC Advances. 2015. V. 5, I. 115. PP. 94949-94979.

5. Belyaev A.V., Venediktov A. B., Khranenko S.P. About the Nature of Rhodium(III) Chloride. Koord. Khim. 1983. V. 9 (1). P. 120—129.

6. Ohtani B., Prieto-Mahaney O.O., Li D., Abe R. What is Degussa (Evonik) P25? Crystalline composition analysis, reconstruction from isolated pure particles and photocatalytic activity test. Journal of Photochemistry and Photobiology A: Chemistry. 2010. V. 216. I. 2—3. P. 179—182. https://doi.org/10.1016/j.jphoto chem.2010.07.024.

7. Бердюгин С.Н., Васильченко Д.Б., Байдина И.А., Коренев С.В., Корольков И.В. Кристаллическая структура и свойства [Rh2(H2O)8(OH)2](NO3)4·4H2O. Журнал структурной химии. 2018. Т. 59. № 3. С. 687—691.

8. Kokka A., Katsoni A., Yentekakis I.V., Panagiotopoulou P. Hydrogen production via steam reforming of propane over supported metal catalysts. International Journal of Hydrogen Energy. 2020. V. 45. I. 29. P. 14849—14866. https://doi.org/10.1016/j.ijhydene.2020.03.194.

9. Alphonse P., Ansart F. Catalytic coatings on steel for low-temperature propane prereforming to solid oxide fuel cell (SOFC) application. Journal of Colloid and Interface Science. 2009. V. 336. I. 2. P. 658—666. https://doi.org/10.1016/j.jcis.2009.04.079.

10. Nagaoka K., Sato K., Yu L. Rh/Ce0.25Zr0.75O2 Catalyst for Steam Reforming of Propane at Low Temperature. ChemCatChem. 2018. doi: 10.1002/cctc.201801824.

11. Li Y., Wang X., Song C. Spectroscopic characterization and catalytic activity of Rh supported on CeO2-modified Al2O3 for low-temperature steam reforming of propane. Catalysis Today. 2016. V. 263. P. 22—34. https://doi.org/10.1016/j.cattod.2015.08.063.

12. Zyryanova M.M., Snytnikov P.V., Amosov Yu.I., Belyaev V.D., Kireenkov V.V., Kuzin N.A., Vernikovskaya M.V., Kirillov V.A., Sobyanin V.A. Upgrading of associated petroleum gas into methane-rich gas for power plant feeding applications. Technological and economic benefits. Fuel. 2013. Vol. 108. P. 282—291. http://dx.doi.org/10.1016/j.fuel.2013.02.047.

13. Sui R., Mantzaras J., Liu Z., Law C.K. Kinetic modeling of total oxidation of propane over rhodium. Combustion and Flame. 2022. V. 243. P. 111847.

14. Karakaya C., Maier L., Deutschmann O. Surface reaction kinetics of the oxidation and reforming of CH4 over Rh/Al2O3 catalysts. Int. J. Chem. Kinet. 2016. V. 48. P. 144—160.

15. Schadel B.T., Duisberg M., Deutschmann O. Steam reforming of methane, ethane, propane, butane, and natural gas over a rhodium-based catalyst. Catalysis Today. 2009. V. 142. P. 42—51. doi:10.1016/j.cattod.2009.01.008.


Review

For citations:


Urlukov A., Uskov S., Potemkin D., Berdyugin S., Rogozhnikov V., Snytnikov P. Optimization of Rh-containing Catalysts for Low-temperature Steam Reforming of Light Hydrocarbons. Ecology and Industry of Russia. 2023;27(6):17-23. (In Russ.) https://doi.org/10.18412/1816-0395-2023-6-17-23

Views: 231


ISSN 1816-0395 (Print)
ISSN 2413-6042 (Online)