Preview

Ecology and Industry of Russia

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Impact Study of Fuel Type and Composition on the Performance of Hybrid Power Plants with Fuel Cells

https://doi.org/10.18412/1816-0395-2023-6-4-9

Abstract

The effect of various fuel compositions and origins on the characteristics and efficiency of hybrid systems — solid oxide fuel cells-gas turbines (SOFC-GT) was studied. The published and calculated data of modeling the effect of various types of fuel on the efficiency and flow control parameters in the proposed SOFC-GT hybrid power plant were presented. It was confirmed that fuel variations at the input and its impact on the cycle efficiency when designing SOFC-GT hybrid plants are to be taken into account. The relevance of hybrid electrochemical-mechanical systems for processing and recycling gas and hydrocarbon emissions was shown for the manufacturing and energy plants – thermal power station – petrochemical unit.

About the Authors

A.A. Filimonova
Kazan State Power Engineering University
Russian Federation

Cand. Sci. (Med.), Associate Professor



A.A. Chichirov
Kazan State Power Engineering University
Russian Federation

Dr. Sci. (Chem.), Head of Chair



N.D. Chichirova
Kazan State Power Engineering University
Russian Federation

Dr. Sci. (Chem.), Head of Chair



A.V. Pechenkin
Kazan State Power Engineering University
Russian Federation

Post-graduate Student, Junior Research Fellow scientific laboratory "TEGATU"



A.S. Vinogradov
Kazan State Power Engineering University
Russian Federation

Post-graduate Student



References

1. Saadabadi S.A. Thattai A.T., Fan L., Lindeboom R., Spanjers H., Aravind P.V. Solid oxide fuel cells fuelled with biogas: potential and constraints. Renewable. Energy. 2019. Vol. 134. P. 194—214.

2. Анисимов П.Н., Медяков А.А., Осташенков А.П. Автономные стационарные комбинированные энергетические установки для энергообеспечения производств. Энергосбережение и водоподготовка. 2021. Т. 6 (134). С. 14—19.

3. Ward A.J., Lewis D.M., Green F.B. Anaerobic digestion of algae biomass: a review. Algal Research. 2014. Vol. 5. P. 204—214.

4. Abdelkareem M.A., Tanveer W.H., Sayed E.T., Assad M., Allagui A., Cha S.W. On the technical challenges affecting the performance of direct internal reforming biogas solid oxide fuel cells. Renewable and Sustainable Energy Reviews. 2019. Vol. 101. P. 361—375.

5. Fan L., Li C., van Biert L., Zhou S.-H., Tabish A.N., Mokhov A., Aravind P.V., Cai W. Advances on methane reforming in solid oxide fuel cells. Renewable and Sustainable Energy Reviews. 2022. Vol. 166 P. 112646.

6. Aramouni N.A.K., Touma J.G., Tarboush B.A., Zeaiter J., Ahmad M.N. Catalyst design for dry reforming of methane: analysis review. Renewable and Sustainable Energy Reviews. 2018. Vol. 82. P. 2570—2585.

7. Rahimpour M.R., Hesami M., Saidi M., Jahanmiri M., Abbasi M. Methane steam reforming thermally coupled with fuel combustion: application of chemical looping concept as a novel technology. Energy Fuels. 2013. Vol. 27 (4). P. 2351—2362.

8. García-Lario A.L., Grasa G.S., Murillo R. Performance of a combined CaO-based sorbent and catalyst on H2 production, via sorption enhanced methane steam reforming. Chemical Engineering Journal. 2015. Vol. 264. P. 697—705.

9. Minh D.P., Pham X., Siang T.J., Vo D.N. Review on the catalytic tri-reforming of methane. Part I. Impact of operating conditions, catalyst deactivation and regeneration. Applied Catalysis A: General. 2021. Vol. 621. Р. 118202.

10. Elharati M.A., Dewa M., Bkour Q., Hussain A., Dong S., Ha S. Internal reforming solid oxide fuel cell system operating under direct ethanol feed condition. Energy Technology. 2020. Vol. 8 (9). P. 1—11.

11. Chen L., Qi Z., Zhang S., Su J. Catalytic hydrogen production from methane. A review on recent progress and prospect. Catalysts. 2020. Vol. 10 (8). P. 858.

12. Цгоев Р.С. Применение энергоустановок на топливных элементах на теплоэлектростанциях. Теплоэнергетика. 2020. Т. 8. С. 93—100.

13. Коровин Н.В. Расчет коэффициента полезного действия гибридной электростанции с высокотемпературным топливным элементом. Теплоэнергетика. 2007. Т. 2. С. 49—53.

14. Осипов М.И., Гасилов А.В. Анализ схемных решений и оптимизация параметров комбинированных установок с высокотемпературными топливными элементами и газовыми турбинами. Вестник Московского государственного технического университета им. Н.Э. Баумана. Серия Машиностроение. 2010. Т. 2 (79). С. 84—90.

15. Федотов Ю.С., Смирнов Д.Б., Воробьев П.А., Хартон В.В., Бредихин С.И. Макроскопическое моделирование процессов переноса в планарных твердооксидных топливных элементах: оценка критических факторов. Международный научный журнал "Альтернативная энергетика и экология". 2014. Т. 20 (160). С. 26—37.


Review

For citations:


Filimonova A., Chichirov A., Chichirova N., Pechenkin A., Vinogradov A. Impact Study of Fuel Type and Composition on the Performance of Hybrid Power Plants with Fuel Cells. Ecology and Industry of Russia. 2023;27(6):4-9. (In Russ.) https://doi.org/10.18412/1816-0395-2023-6-4-9

Views: 349


ISSN 1816-0395 (Print)
ISSN 2413-6042 (Online)