Preview

Ecology and Industry of Russia

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Synthesis of Oxygen-free Liquid Fuel by Slow Pyrolysis of Plant Raw Material under Pressure

https://doi.org/10.18412/1816-0395-2023-3-28-32

Abstract

The possibility of processing low-cost types of biomass, including sawdust, into oxygen-free hydrocarbon fuel was studied. Synthesis of liquid fuel was performed by slow pyrolysis of plant raw materials under pressure. It was revealed that the resulting liquid fuel had a higher volatility than the feedstock and an increased fuel calorific power compared to conventional biofuels, which was explained by deoxygenation. The possibility of producing oxygen-free liquid fuel from vegetable raw material was substantiated. It was proposed to use produced oxygen-free liquid fuels instead of mineral fuels for sustainable development.

About the Authors

S.Yu. Chudinov
LLC "Bumatika"
Russian Federation

Drector



M.P. Krasnovskikh
Perm State National Research University
Russian Federation

Cand. Sci. (Eng.), Senior Lector



N.N. Slyusar
Perm National Research Polytechnic University
Russian Federation

Dr. Sci. (Eng.), Professor



Ya.I. Vaisman
Perm National Research Polytechnic University
Russian Federation

Dr. Sci. (Med.), Professor



V.N. Korotaev
Perm National Research Polytechnic University
Russian Federation

Dr. Sci. (Eng.), Professor



A.A. Ketov
Perm National Research Polytechnic University
Russian Federation

Dr. Sci. (Eng.), Professor



References

1. Renzaho A.M.N., Kamara J.K., Toole M. Biofuel production and its impact on food security in low and middle income countries: Implications for the post-2015 sustainable development goals. Renewable and Sustainable Energy Reviews. 2017. Vol. 78. Iss. C. P. 503—516. DOI: 10.1016/j.rser.2017.04.072.

2. Бондарчук Н.В., Титова Е.С. Производство биотоплива как инновационный путь к защите окружающей среды: экономические риски и некоторые перспективы. Экология и промышленность России. 2017. Т. 21. № 6. С. 48—53. DOI: 10.18412/1816-0395-2017-6-48-53.

3. Мохирев А.П., Безруких Ю.А., Медведев С.О. Переработка древесных отходов предприятий лесопромышленного комплекса, как фактор устойчивого природопользования. Инженерный вестник Дона. 2015. № 2. Ч. 2. С. 1—13.

4. Семенов В.Г. Определение цетанового числа и теплоты сгорания биодизельного топлива. Транспорт на альтернативном топливе. 2011. № 4. С. 48—49.

5. Зайченко В.М., Качалов В.В., Лавренов В.А., Лищинер И.И., Малова О.В. Получение синтез-газа из древесных отходов. Экология и промышленность России. 2016. Т. 20. №11. С. 4—9. DOI: 10.18412/1816-0395-2016-11-4-9.

6. Ершов М.А., Зайченко В.М., Качалов В.В., Климов Н.А., Лавренов В.А., Лищинер И.И., Малова О.В., Тарасов А.Л. Синтез базового компонента авиабензина из синтез-газа, полученного из биомассы. Экология и промышленность России. 2016. Т. 20. № 12. С. 25—29. DOI: 10.18412/1816-0395-2016-12-25-29.

7. Ioelovich M. Comparison of Methods for Calculation of Combustion Heat of Biopolymers. American Journal of Science. Engineering and Technology. 2016. Vol. 1. No 2. P. 63—67.

8. Long F., Liu W., Jiang X., Zhai Q., Cao X., Jiang J., Xu J. State-of-the-art technologies for biofuel production from triglycerides. A review. Renewable and Sustainable Energy Reviews. 2021. Vol. 148. C. 111269. DOI:10.1016/j.rser.2021.111269.

9. Azizan M.T., Jais K.A., Sa’aid M.H., Ameen M., Shahudin A.F., Yasir M., Ramli A. Thermodynamic Equilibrium Analysis of Triolein Hydrodeoxygenation for Green Diesel Production. Procedia Engineering. 2016. Vol. 148. P. 1369—1376. DOI:10.1016/j.proeng.2016.06.603.

10. Chang S.H. Bio-oil derived from palm empty fruit bunches: Fast pyrolysis, liquefaction and future prospects. Biomass and Bioenergy. 2018. Vol. 119. P. 263—276. DOI:10.1016/j.biombioe.2018.09.033.

11. Ketov A., Korotaev V., Sliusar N., Bosnic V., Krasnovskikh M., Gorbunov A. Baseline Data of Low-Density Polyethylene Continuous. Recycling. 2022. Vol. 7. Iss. 2. doi.org/10.3390/recycling7010002.

12. Murata K., Sato K., Sakata Y. Effect of pressure on thermal degradation of polyethylene. Journal of Analytical and Applied Pyrolysis. 2004. Vol. 71. Iss. 2. P. 569—589. DOI:10.1016/j.jaap.2003.08.010.

13. Tamošiūnas A., Gimžauskaitė D., Aikas M., Uscila R., Praspaliauskas M., Eimontas J. Gasification of Waste Cooking Oil to Syngas by Thermal Arc Plasma. Energies, 2019. Vol. 12. No 13. 2612. doi.org/10.3390/en12132612.

14. García L. Hydrogen production by steam reforming of natural gas and other nonrenewable feedstocks. Compendium of Hydrogen Energy. 2015. P. 83—107. DOI:10.1016/B978-1-78242-361-4.00004-2.

15. Kim S.W., Koo B.S., Ryu J.W., Lee J.S., Kim C.J., Lee D.H., Choi S. Bio-oil from the pyrolysis of palm and Jatropha wastes in a fluidized bed. Fuel Processing Technology. 2013. Vol. 108. P. 118—124. DOI:10.1016/j.fuproc.2012.05.002.


Review

For citations:


Chudinov S., Krasnovskikh M., Slyusar N., Vaisman Ya., Korotaev V., Ketov A. Synthesis of Oxygen-free Liquid Fuel by Slow Pyrolysis of Plant Raw Material under Pressure. Ecology and Industry of Russia. 2023;27(3):28-32. (In Russ.) https://doi.org/10.18412/1816-0395-2023-3-28-32

Views: 349


ISSN 1816-0395 (Print)
ISSN 2413-6042 (Online)