

Use of Lignin-Containing Waste of the Pulp and Paper Industry in Obtaining Lign-Epoxy Composite Materials
https://doi.org/10.18412/1816-0395-2023-3-18-23
Abstract
The possibility of processing lignosulfonates to obtain composite materials using ED-20 epoxy resin as a binder was considered. It was shown that powdered lignosulfonates (PLS) play the role of a hardener for epoxy resins and reduce the toxicity of polyethylenepolyamine (PEPA), which is widely used as an industrial hardener, by 50–68 %. The article assesses the possibility of using PLC as a hardener and filler composition. The optimal composition of lignoepoxy compounds was revealed: ED-20 – 60–70 % by weight; PLS – 30–40 % by weight; PEPA – 6–7 % by weight. Biotesting proved that the resulting material does not have toxic properties. It was discovered that these compositions have longterm biostability while maintaining physical and mechanical properties. It was concluded that it is expedient to process powdered lignosulfonates to obtain lignoepoxy compositions suitable as building material and alternatives to wood chip and wood fiber materials.
About the Author
A.E. ZhulanovaRussian Federation
Post-graduate Student
References
1. Ланге К.Р. Поверхностно-активные вещества: синтез, свойства, анализ, применение. Под науч. ред. Л.П. Зайченко. СПб., Профессия, 2004. 240 с.
2. Sahan A. The effect of lignosulfonates on concretes produced with cements of variable fineness and calcium aluminate content. Construction and Building Materials. 2017. V. 131. P. 347—360.
3. Jang Y., Huang J., Li K. A New Formaldehyde-Free Wood Adhesive from Renewable Materials. Int. J. Adhes. Adhes. 2011. V. 31. P. 754—759.
4. Вайсман Я.И., Глушанкова И.С., Ширинкина Е.С., Давлетова С.Ф. Способ переработки лигнинсодержащих отходов целлюлозно-бумажной промышленности с получением сорбентов для очистки сточных вод. Теоретическая и прикладная экология. 2018. № 3. С. 93-99.
5. Сайдумов М., Муртазаев С., Аласханов А., Дагин И., Нахаев М. Техногенные отходы как сырьевая база для получения современных строительных композитов. Экология и промышленность России. 2019. Т. 23. № 23(7). С. 31—35. https://doi.org/10.18412/1816-0395-2019-7-31-35.
6. Forss K.G., Fuhrmann A. Finnish plywood, particleboard, and fireboard made with a lignin-base adhesive. Forest Prod J. 1979. V. 29. P. 39—43.
7. Forss F.G., Fuhrmann A. KARATEX-the lignin-based adhesive for plywood, particle board and fibre board. Pap Puu. 1976. V. 58. P. 817—824.
8. González M.G., Cabanelas J.C., Baselga J. Applications of FTIR on epoxy resins – identification, monitoring the curing process, phase separation and water uptake. Infrared spectroscopy- materials science, engineering and technology. Rijeka Croatia: InTech Publisher. 2012. P. 261—284.
9. Furkan H. Isikgor, Remzi Becer C. Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polymer Chemistry. 2015. V. 6. Iss. 25. P. 4497—4559.
10. Pham H.Q., Marks M.J. Epoxy resins. Encyclopedia of industrial chemistry. Weinheim: Wiley-VCH Verlag GmbH. 2012. Р. 156—238.
11. Hong Pan, Gang Sun, Tao Zhao. Synthesis and characterization of aminated lignin. International Journal of Biological Macromolecules. 2013. V. 59. P. 221—226.
12. Yoo MJ, Kim SH, Park SD, Lee WS, Sun JW, Choi JH, et al. Investigation of curing kinetics of various cycloaliphatic epoxy resins using dynamic thermal analysis. Eur-Polym J. 2010. V. 46. Iss. 5. P. 1158—1162. doi: 10.1016/j.eurpolymj.2010.02.001.
Review
For citations:
Zhulanova A. Use of Lignin-Containing Waste of the Pulp and Paper Industry in Obtaining Lign-Epoxy Composite Materials. Ecology and Industry of Russia. 2023;27(3):18-23. (In Russ.) https://doi.org/10.18412/1816-0395-2023-3-18-23